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FOREWORD

The need for organizing the ICIDES sequence of conferences arose in my mind almost a
decade ago while noticing that there were no established forums for the exchange of conceptual
ideas in the general field of inverse, semi-inverse, and direct design and optimization in
engineering sciences. There were neither specialized technical journals nor textbooks available in
this highly interdisciplinary field that rapidly grew with the availability of faster and larger
computing machines. Consequently, there were no technical courses in engineering programs that
would cover these design methodologies. The situation is starting to change, though, as a response
to increased interest on the part of industry which feels the pressure from the competitive global
market. ICIDES was envisioned as an open forum for experts and users alike to present their
methodologies and discuss their concepts.

The ICIDES sequence has experienced a steady growth in attendance, the number of
publications, and the international character of its audience, while maintaining high standards.

Locations Dates Papers Countries Sponsors

ICIDES-I Univ. of Texas at Austin Oct. 17-18, 1984 31 9 UT-Austin
ICIDES-I! Penn State University Oct. 24-26. 1987 32 9 NSF,ONR,PSU
ICIDES-III Washington, D.C. Oct. 23-25. 1991 48 15 NSF,ONR.NASA,PSU

Each contributed technical paper was reviewed by two colleagues without revealing to them
the identities of the authors. Although unusual, this process has stimulated more substantial and
constructive comments from the reviewers and has contributed to the improvements in the quality
of the accepted technical papers. Invited lectures at ICIDES-III form a unique collection of survey
articles that present a status report on the present state of the art worldwide.

ICIDES-III would not have been possible without financial support from NASA
Headquarters (Ms. Pamela Richardson and Mr. Louis Williams), ONR-Mechanics Division (Dr.

Philip Abraham and Dr. Spiridon Lekoudis), and NSF-Communications and Computational
Systems Program (Dr. George Lea). I would also like to thank my student assistants, Mr. Branko
Kosovic and Mr. Scott Sheffer for their help with the word processing of the conference
announcements. Finally, I would like to thank the authors and reviewers of the technical papers
and to the invited lecturers who contributed to the success of the ICIDES-III.

University Park, PA
September 1991

George S. Dulikravich
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SUMMARY *'_

A survey is given of aerodynamic design activities in The Netherlands, which

take place mainly at Fokker, NLR and Delft University of Technology (TUD). The

survey concentrates on the development of the Fokker i00 wing, glider design at

TUD and research at NLR in the field of aerodynamic design. Results are shown
to illustrate these activities.

I.INTRODUCTION

in the Netherlands, activities in the field of aerodynamic design take place at

the aircraft factory Fokker, the aeronautical research institute NLR and the

Technical University of Delft.

A well known product of these activities is the civil transport aircraft Fokker

I00 (See fig.l.l). But no less successful is the ASW-24 glider designed by

Boermans at the Low Speed Laboratory of TUD in collaboration with Alexander

Segelflugzeugbau in Germany( See Fig.l.2 ).

Very often, new aircrafts result from modifying existing aircraft, aiming at

e.g. improvement of performance, adaption to changed market requirements or

improvement of economics in view of operating environment. In that way, the

Fokker i00 has been derived from the Fokker F28 ( see Fig.l.3 ) by means of

sometimes drastic modifications. Also, the gliders designed at Delft are the

result of continuous attempts to reach the limits of sailplane performance.

These developments would not have been possible Without the help of computation-

al tools which play an essential role in both the actual design process and the

analysis of wind tunnel measurements and also at the interpretation of flight

test data.

The present paper deals with the main aerodynamic design objectives pursued at

the development of the transport aircraft Fokker i00 and the glider ASW-24 and

the process followed to attain them. In conclusion, special attention will be

paid to research activities at NLR in the field of computatLonal fluid dynamics

in support of design developments.

2.THE FOKKER I00.

The Fokker i00 design will be illustrated by considering two of the main design

problems solved during development. A more complete and detailed account can be

found in Refs. i and 2.

The Fokker I00 wing has been derived from the F-28 wing, which is determined by

four wing sections connected with straight generators. The main objective for

a new wing design was improvement of the Mach drag rise characteristics. The F-

L 28 was originally designed for a lift coefficient of CL-0.2 whereas the new |
design requirements lead to a Ce--0.4 to 0.5 at which condition the transonic J

drag increase of the F-28 wing is not negligible.
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FTable I of the most important modifications that have been
presents a survey

mplemented successively, thus defining a number of new wing shapes which have

been analyzed by means of both computations and wind tunnel measurements.

The modifications applied to wing sections I and II in wing 4 resulted from a

computational study with the help of a viscous transonic flow code, which

predicted a significant improvement of the Mach drag rise characteristics as a

consequence of these modifications ( See Fig.2.1). This was fully confirmed by

means of wind tunnel measurements, though it appeared necessary to improve the

stalling characteristics of the outer wing.

Computational analysis led to the conclusion that the Mach drag rise character-

istics could be improved by a further modification of section I. Moreover, by

modifying section IV improvement of the outer wing stall behaviour was expected.

Test results for the thus defined wings 5 and 6 are presented in Fig.2.2

indicating a further improvement when compared with wings 3 and 4.

As a preliminary final step wing 8 was defined, combining a rearward chord

extension with rear camber. This modification led to a second improvement of the

drag rise characteristics as illustrated by Fig.2.3 for section II.

At that time, however, it appeared necessary to adapt the design goals to market

requirements in terms of an increase of take-off weight. This led to the

definition of wing I0, which happened to exhibit a rather large drag rise at low

lift coefficients cruising conditions. Subsequent reduction led to the

definition of wing II (See Fig.2.4).

Modification of the lower leading edge of sections II and IV resulted in wing

II. The effect of this modification is shown in Figs. 2.4 and 2.5. And, finally,

modification of section II leading to the definition of wing 12 took care of the

design requirement with respect to the stalling behaviour.

In conclusion, a survey of the main modifications applied to the original F-28

wing is given by means of Fig.2.6 where a comparison is made between the

definitive wing planform for the Fokker I00 and the F-28 wing planform and where

also the basic wing sections are compared. This figure shows that a large part

of the original F-28 wing has still been retained. The main differences are the

span extension and leading as well as trailing edge modifications. However, as

has been verified by means of wind tunnel measurements these modifications were

sufficient for attaining amongst other things the design goals with respect tc

high- and low speed drag, buffet onset boundary and stalling behaviour.

Another important design problem was the improvement of the stub wing with

respect to its drag characteristics. At the new cruising conditions the flow

around the original F-28 stub wing contained regions with supersonic velocities,

thus leading to undesirable wave drag. It appeared to be possible to reshape the

stub wing such that the flow remained subcritical over the entire range of

cruise lift coefficients.

Finally, some attention may be paid to the computer codes used during the design

process. A major role has been played by two transonic flow analysis codes i.e.

the 3D code XFLO-22 and a 2D viscous transonic flow code by means of which the

effect of the various wing modifications was predicted. The wing modifications

were based on earlier wing design computations, preceding the actual Fokker i00

wing design, bY means of the constrained inverse code for the design of wings

with a given pressure distribution in subsonic flow of Ref.3. More recently this

| code has been extended for application to supercritical flow conditions (Ref.4). |
L J
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_he wing design system is based on an inverse method of the residual correction ]

type, combining a direct flow solver for transonic flow with simple geometric

correction rules. In order to fulfil requirements from the structural

engineer's point of view, geometric constraints are taken into account.

The transonic wing-body code XFLO-22 (Ref.6) is an extension of the non-

conservative finite difference wing code FLO-22 (Ref.5) of Jameson and Caughey

modified to simulate fuselage cross-flow effects. This simulation is achieved

by replacing the boundary condition of zero normal velocity in the plane of

symmetry in the original code by a condition of prescribed non-zero normal

velocity, the latter being computed by means of the NLR panel method (Ref.7,8).

By means of post-processing viscous effects may then be estimated using the 3-D

laminar/turbulent boundary layer code BOLA (Ref.9).

An example of the usefulness of XFLO-22 is given in Fig.2.7 where a comparison

is made between calculated and measured (wind tunnel and flight test) pressure

distributions for two wing stations. It may be noted that a surprisingly good

correlation is shown. Presumably the applied condition of taking the trailing

edge flow tangential to the lower wing surface, when using a grid of 160 (chord)

x 32 (span) x 28 (normal) points, compensates for the absence of viscous

effects. The same kind of correlation is demonstrated in Fig. 2.8 where a

comparison is made between measured and predicted buffet onset boundaries.

For the design problem associated with the stub wing with its strong interaction

with the fuselage and the engine nacelle a design code was not available. The

problem was solved by combining results of the 2D analogue of the wing design

code with 3D panel method calculations (Ref.7). The success of this approach

may be illustrated by means of Fig.2.9 where a comparison is made between

calculated and measured stub wing pressures.

3.THE SAILPLANE ASW-24

The ASW-24 is a Standard Class Sailplane built by Alexander Schleicher

Flugzeugbau in Germany. The aerodynamic design of this glider was performed in

close cooperation between the manufacturer and the Low Speed Laboratory (LSL)

of Delft University of Technology (TUD). Detailed account of aerodynamic as well

as structural design is given in Ref.lO.

When designing a glider, the main objectives are maximizing the glide ratio at

the higher flight speeds and minimizing the rate of sink at the lower flight

speeds. The higher flight speeds are applied when flying from one thermal to

another, and the lower flight speeds are Used when climbing in a thermal.

A typical glider flight performance polar is shown in Fig.3.1 for the ASW-24.

It results from flight test measurements and computational analysis with respect

to its component parts. From this figure it appears that the wing contributes

considerably to the drag, at higher flight speeds especially in consequence of

the profile drag. Accordingly, the history of glider design shows a continuous

search for low drag wing profiles, mainly by attempting to maximize the laminar

flow region on the airfoils.

When designing airfoils for laminar flow with a view to practical application

the key problem is to avoid the appearance of laminar separation bubbles. These

bubbles cause pressure drag and have a detrimental effect on the subsequent

turbulent boundary layer such that a considerable drag increase results. Thus,

L the should be such that transition to turbulent flow before the |design occurs

laminar flow will separate.
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_here are a few alternatives to solve this problem. One of these is Wortmann's

destabilizing region concept, the other is the application of some tripping

device in order to provoke transition to turbulent flow.

]

When following the destabilizing region concept the airfoil is shaped such that

in the region where laminar separation is expected to occur, a slightly adverse

pressure gradient is induced. This adverse gradient destabilizes the laminar

boundary layer causing transition and thus avoiding flow separation. Application

of a tripping device amounts to disturbing the boundary layer by means of

artificial roughness on the airfoil surface or by means of blowing.

Both alternatives have been used at the design of the airfoil DU84-158 applied

in the ASW-24. The destabilizing region concept has been applied at the upper

surface and a tripping device in the form of a so-called "zig-zag tape" has been

applied at 77% chord position at the lower surface. The measured pressure

distribution of Fig.3.2. shows a laminar separation bubble on the lower surface

at about 85% chord and its removal due to application of the zig-zag tape.

Transition to turbulent flow on the upper surface is triggered by the adverse

gradient at about 59% chord.

The effectiveness of the zig-zag tape is also shown in Fig.3.3 where measured

aerodynamic characteristics are given both for the clean airfoil and the taped

airfoil. The maximum lift is hardly influenced by the roughness, the stalling

behaviour is gentle and the drag reduction is considerable.

As is shown in Fig.3.1, at low speed climbing conditions, more than 50% of the

total drag is due to induced drag. So, it will be clear that reduction of

induced drag will be another major goal when designing sailplanes: wing planform

and aspect ratio being the main pirameters when optimizing for induced drag at

a given wing loading.

In the present case the wing planform has been chosen with the help of numerical

optimization studies based on lifting line theory with taper ratio and spanwise

position of taper ratio change as design variables. The aspect ratio has been

chosen in combination with the wing loading on the basis of cross country speed

optimization studies, for details of which the reader is referred to ref.10.

A third aspect of wing design that may be considered here, is the effect of wing

fuselage interaction. Applying the panel method of Ref.7 with the panel schema-

tization of Fig.3.4 the pressure di'stribution on the wing-fuselage combination

has been studied. Fig.3.5 shows the pressure distribution in a few wing sections

for two different angles of attack.

The typical modern glider fuselage has been designed such that the forebody fits

into the streamlines of the wing at higher lift coefficients in order to avoid

the occurrence of high Suction peaks in sections near the fuselage (Fig.3.5a).

This has, however, as a consequence that at high speed conditions (lower lift

coefficient) the cross flow effect 'is increased (Fig.3.5b), which causes the

wing sections close to the fuselage to operate in non-optimal conditions. To

improve the flow conditions at the junction of the ASW-24, a small fairing with

7% chord extension has been applied where the wing is lofted towards a wing root

airfoil suitable for turbulent flow conditions. Nevertheless, improvement of the

wing fuselage junction is still the subject of continuing study.

In the past decades considerable progress in glider design has been made. This

L may be illustrated by means of Fig.3.6, where the flight performance polar for Jl

the present design is shown in comparison with that of two predecessors. The

difference in performance is a consequence of the improvement of the aerodynamic
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_haracteristics as illustrated by Fig.3.7 which is mainly due to the wing

profiles that have been applied.

In conclusion these profiles may be compared by means of Figs.3.Sa,b,c , where

calculated inviscid pressure distributions are shown. From these pressure

distributions a rough estimate of the laminar flow region can be made, clearly

showing the backward displacement of the transition point resulting in a

decrease of the drag.

The DU84-158 airfoil has been designed with the help of the LSL computer program

for airfoil analysis and design (Refs.12,13). This program is based on Timman's

conformal mapping method for inviscid flow (Ref.14) in combination with Thwaites

method for laminar and Green's method for turbulent boundary layer flow and the

Van Ingen eg-method for prediction of transition (Ref.15).

4.DEVELOPMENTS AT NLR

In support of aerodynamic aircraft design NLR has a continuing research program

for the development of CFD codes both for analysis and design. Gradually, as

will have become clear from the preceding sections the tools thus developed are

incorporated in the actual design processes followed in the industry. In the

present section, some attention will be paid to capabilities that have not yet

been (fully) utilized for practical applications. Also, further contributions

of NLR to improvement of airfoil- and wing design will be considered.

4.1 AIRFOILS

For analysis and design of airfoils in both subsonic and transonic flow taking

viscous effects into account, t_e MAD computer program system has been

developed. On the ICIDES conference of 1984 Slooff has given a global descrip-

tion of the system as it was available at that time (Ref.16).

Since then the system of Ref.17 has been extended by incorporating the transonic

design method of Ref.25 in combination with the transonic analysis method of

Refs.5 and 6. The general approach followed to solve the design problem has

remained the same. It is of the residual correction type where the actual design

problem is translated into an equivalent design problem of reduced complexity,

thus enabling the application of relatively simple inverse methods and it leads

to an iterative design process as depicted in Fig.4.1.

It is assumed that the design goal 'is formulated in terms of a target pressure

distribution and that an initial guess of the airfoil shape will be given. A

direct flow solver for either subsonic or transonic viscous flow is used for the

determination of the pressure distribution on the gien airfoil, and a

constrained inverse method is used to determine the possibi required modifica-
tion.

An example of application to a subsonic design problem is described in Refs.19

and 20.

It concerns the improvement with respect to drag behaviour of the wing-slat

configuration of Fig.4.2. As becomes clear from Fig.4.3 it has been found in

wind tunnel measurements that the flow around this airfoil shows early boundary

layer separation on the main wing upper surface at the take-off condition lift

coefficient C l = 2.1.

With the aid of the method of Ref.18 for the determination of viscous subsonic

L flow around multi-element airfoils analysis calculations were made. From this |

analysis it was concluded that reduction of the drag should be attempted by J
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_educing the extent of the separation region, impliedThis that the adverse

pressure gradient on the wing upper surface had to be reduced.

As the basic airfoil geometry should not be altered when designing a wing-slat

configuration, the sole possibility to reduce the pressure gradient is to lower

the suction peak level on the wing nose, without however reducing the lift

coefficient at the same time.

These considerations led to specification of the target as depicted in Fig.4.4,

in terms of an equivalent potential flow pressure distribution. The main points

of interest are :

(i) a decreased velocity peak on the main wing upper surface aiming at a delay

of boundary layer separation,

(ii) increase of expansion around the wing nose aiming at an increase of the

slat dumping velocity,

(iii) an increase of the slat dumping velocity aiming at increase of the slat

lift contribution,

(iv) an increase of the sla_ lower surface pressure level aiming at increase of

the slat lift and decrease of the slat drag.

Application of the design process depicted in Fig.4.1. led to the result

depicted in Fig.4.5. The most striking geometry modification is the blunt nose

of the main wing resulting in a rather thin slat trailing edge. Application of

the viscous flow analysis method of Ref.18 to the new geometry produced the

pressure distribution shown in Fig.4.6 in comparison with that on the original

configuration.

Clearly two of the design goals have been attained according two these

calculations. The suction peak on th_ main wing has been reduced and the dumping

velocity on the slat has been increased. Hardly visible is a slightly rearward

shift of the boundary layer separation point on the wing upper surface (it

amounts to about 2% of the local chord) and the pressure level at the slat lower

side has decreased instead of increased.

However, as the analysis method has not been developed for the treatment of

separated flow regions, the quantitative value of these results is questionable.

Moreover the results for the slat lower surface, modelled as shown in Fig.4.1

to simulate the existence of the separation bubble, are of course less reliable.

Therefore it was concluded that the results were sufficiently encouraging in

order to test the new slat geometry in the wind tunnel.

The measured Cl-a curves for both the .original and new configuration are

compared in Fig.4.7. Apparently Cl_ ' has been retained and the increase of the

CI-_ slope indicates reduced viscous losses. This is confirmed by the CI-C d

curves shown in Fig.4.8 which also shows that at the present design condition

(C I = 2.1 ) a drag reduction of more than 30 % has been realized.

Another example of application of the MAD system will be presented in Ref.21.

It concerns the design of a medium speed laminar flow airfoil. As a first step

in the design process a target pressure distribution was specified. Here the

goal was to choose a pressure distribution such that at the upper side the

boundary layer would remain laminar over at least 60% of the chord.

The pressure distribution prescribed as target for the upper side of the airfoil

is shown in Fig.4.9 together with calculated Ree ( Reynolds number based on

L momentum loss thickness). Nee, represents the Tollmien-Schlichting stability ]

criterium and Ree, is the transition criterium according to Granville. The-
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_alculations predict instability of the boundary layer for x/c > .i4, but a

reasonable margin with respect to transition to turbulent flow is left untiI

x/c-.6. As a resuit of appIying the MAD system, an airfoii was obtained which

produces the desired pressure distribution perfectly, as is shown in Fig.4.10.

]

From this example where, in connection with the laminar flow, special attention

had to be paid to the nose shape, it has been learned once again, that care has

to be given to the leading and trailing edge regions ( adaptation of the target

without adapting the design goals) in order to obtain convergence and in order

to produce realistic airfoil shapes.

Notwithstanding these difficulties the design was successful as may be

illustrated by means of Figs.4.11 and 4.12, where a comparison is made between

pressure distributions and C_-C d curves as measured in the wind tunnel and as

calculated by means of VGK, a 2D viscous transonic airfoil code (Ref.23,24),

which is an extension of the semi-conservative finite difference method of

Garabedian and Korn for inviscid transonic flow, weakly coupled with a boundary

layer code based on Thwaites method for laminar and Green's lag-entrainment

method for turbulent flow.

To conclude this subsection an application to wind turbine design may be

considered (Ref.22). The objective was to design an airfoil with an increased

maximum lift over drag ratio. Starting point was a blade based on the NACA 4421

airfoil of which the stall behaviour was considered appropriate for control by

stall. Thus the airfoil design had to be done under the side condition that the

stall behaviour should remain approximately the same. Moreover, from structural

point of view, the thickness over chord ratio had to be at least 0.2.

An existing airfoil which could have been considered for application is the

Wortmann FX 84-W-218 airfoil because of its favourable lift over drag ratio. It

has, however, an unacceptable stall behaviour. Therefore it was concluded that

an airfoil should be designed combining the advantages of both the NACA 4421 and

the Wortmann airfoils.

Using CADOS (see section 4.3), a NACA 4421 pressure distribution has been

modified in order to specify a target pressure distribution for the MAD system

( see Fig.4.13). The target pressure distribution should lead to a flow with a

laminar boundary layer in a larger region than at the NACA 4421 airfoil. On the

other hand the target laminar flow region is smaller than at the Wortmann

airfoil in order to avoid rash stall behaviour.

Application of the MAD system led to the NLR/VSH 8801 airfoil. This airfoil

produces the desired pressure distribution as is shown in Fi_.4.14. The geometry

of the new airfoil is compared with those of the NACA airfoil and the Wortmann

airfoil in Fig.4.15. A comparison of the aerodynamic characteristics is made in

Fig. 4.16 which presents the calculated lift and moment coefficient as function

of the angle of attack and in Fig.4.17 which presents the CI-C d curves.

L

The new airfoil has a somewhat larger lift coefficient than the NACA airfoil.

The stall behaviour of both airfoils is approximately the same. For stall

controlled wind turbines a lift curve such as that of the Wortmann airfoil with

hardly any variation near stall is not useful. The maximum lift over drag ratio

of the new airfoil is higher than those of the other airfoils. From these

results it has been concluded that the design goal i.e. combination of the

advantages of both reference airfoils has been met.

J
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F, 2 WINGS

Since the thin wing inverse panel method for design of wings in subsonic flow

became available at NLR in 1974, further developments have gradually increased

NLR's capabilities for wing design. To start with, the inverse method was

incorporated in the design system (Ref.3) for wings in subsonic flow, using the

inverse method for the determination of geometry corrections and the NLR panel

method (Ref.7) for analysis of the modified wings. Subsequently, this system was

extended for application to transonic flow using the XFLO-22 code of Ref.6 for

analysis and applying a 3D analogue of the defect pressure splitting technique

of Refs.25,26 for adaptation of the geometry correction procedure to transonic

flow (Ref.27).

7

The practical applicability of the latter transonic wing design system may be

demonstrated by means of a reconstruction example presented in Figs.4.18,4.19.

Starting point is the well-known DFVLR-F4 wing for the present purpose attached

to a simple cylindrical body. The target pressure distribution represented by

the dashed line in Fig.4.19a is the pressure distribution as obtained by

applying XFLO-22 to the original F4/body geometry of Fig.4.18. An "initial

guess" of the geometry which is required at the start of the design process has

been obtained by distorting the original geometry. The Pressure distribution

represented by the lines marked a is produced by this distorted configuration.

Application of the wing design system resulted after 6 iterations in the

geometry shown in Fig.4.19b in comparison with the original F4 wing geometry (

target). The corresponding pressure distribution is represented by the lines

marked b in Fig.4.19a. The target pressure distribution is reproduced near the

tip. In the other sections some deviations are still present, especially in the

shock region. But the overall agreement between final- and target pressure

distribution is satisfactory.

Fig.4.20 presents a functional breakdown of the algorithm. It follows the

residual correction approach in which the basic idea is to apply a simple fast

geometry correction procedure for determining estimates of the geometry to be

designed and an accurate method for analysis of the flow around the current

geometry.

In the present version of the design system flow analysis is performed by means

of XFLO-22 (Ref.6), a program system based on a combination of Jameson's code

FLO-22 (Ref.5) and the NLR panel method (Ref.7). With the aid of the latter

method it has been attempted to remove the limitation of FLO-22 to wing-alone

configurations. The usefulness of this method for engineering purposes has been

demonstrated and validated by comparison with results of wind tunnel tests for

a number of wing-body configurations ( see Ref.6).

However, it was felt necessary to improve the accuracy of the/design system by

improving the accuracy of the analysis method , at the same time removing the

limitation to wing-alone in a more fundamental way. Therefore, it was decided

to develop a new code for transonic flow analysis. This Multi-component Aircraft

Transonic Inviscid Computation System ( MATRICS ) is based on full potential

theory applying discretizati, _s according to the finite volume concept

(Refs.28,29). It is applicable to wing-body configurations.

The next step in the development of a new analysis code will be the coupling of

MATRICS to a boundary layer calculation method in a ( strong ) interactive way.

L The subsequent incorporation of that code in the wing design system will be one |
of the steps towards the development of a system (WINGDES) for the design of J

wings in viscous transonic flow.
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_he geometry procedure, for which a functional breakdown is given in
correction

Fig. A.21, consists of two major steps. From the pressure defect i.e. the

difference between the target and the current pressure distribution, an

equivalent subsonic perturbation velocity distribution is derived using the

splitting technique of Ref.25, whereupon by means of an inverse panel method

geometry corrections are determined.

The pressure splitting technique applied to the pressure distribution in a wing

section distinguishes between regions with a subsonic and regions with a

supersonic flow behaviour. To this end a "critical" pressure coefficient is

defined and the assumption is made that subsonic theory should be applied in

regions where both target and current pressure distribution are "subcritical"

and supersonic theory if both pressure distributions are "supercritical".

(see Fig.4.22). Application of subsonic thin wing theory then translates the

subsonic pressure defect into subsonic perturbation velocities. Application of

supersonic wavy wall formulae leads to translation of the supersonic pressure

defect into geometric slope corrections which however, for the sake of

similarity in representation, are expressed in equivalent subsonic perturbation

velocities by means of thin airfoil analysis.

Some details of the constrained inverse panel method which is applied for the

derivation of the geometry corrections from the equivalent perturbation

velocities, are given in Fig.4.23. It is essentially a linearized panel method

which utilizes on the mean wing plane a distribution of x-doublets for

representation of thickness effects and a distribution of vorticity for

representation of camber effects and on the body surface constant source panels.

Geometry constraints may be applied in the form of prescribed values of

thickness and/or camber weighted in order to create a desired balance. The

associated over-determined system of equations is solved in a least square error

sense. By adding the squares of the residuals associated with the pressure

defects and the constraints, each multiplied with their specified weight factors

a functional is formed, from which by formal differentiation a new set of

equations is derived that is solved by a block iteration procedure.

The geometry correction procedure thus described is very fast as a consequence

of which the computing time needed for one iteration step is only slightly more

than for one analysis run, however in the leading edge region the thin wing

approximation to the real flow is not applicable and leads to difficulties when

leading edge modifications are pursued.

4.3.TARGET PRESSURE DISTRIBUTIONS

Many design methods, amongst them the residual correction methods of NLR, are

based on minimization of an object function formulated in terms of prescribed

(target) pressure distributions. This leaves the user with the problem to

translate his design goals in properly defined pressure distributions exhibiting

the required aerodynamic characteristics.

Though skilful designers are capable of producing successful designs, as has

been demonstrated in sections 2 and 3, the design efficiency can be improved by

providing the designer with tools for target pressure specification. To this end

two codes have been developed. SAMID (Ref.30) may be used for the selection of

spanload distributions leading to minimum induced and viscous drag taking into

account aerodynamic, flight-mechanical and structural constraints. CADOS

(Ref.31) may be used for selection of appropriate chordwise pressure distribu-

L tions. The latter code is an interactive optimization system for the solution |

of minimization (or maximization) problems defined by the user with respect to J

its object function, design variables and constraints.
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_AMID is based on lifting line approximations using the conservation laws of ]

momentum for determination of the induced drag. The viscous drag is approximated

for given airfoil characteristics by deriving expressions for the sectional

viscous drag in terms of the section lift coefficient using semi-empirical

relations and thin airfoil theory. Through variational calculus a set of

optimality equations is derived from the object function augmented with

constraint terms using Lagrange multipliers. Application of appropriate

discretization then leads to a system of linear equations for trailing edge

vortex sheet strengths and Lagrange multipliers.

Propeller slipstream interaction with the lifting surfaces may be considered as

well as long as it may be assumed that each propeller sheds a helical vortex

sheet not influenced by the presence of the wing and confined to a cylindrical

stream tube parallel to the free stream direction. The velocity distribution

inside the slipstream is assumed to be known. As an example of such an

application the results of Fig.4.25 are presented. This figure shows the optimal

spanwise circulation distribution for the propeller induced velocity distribu-

tion presented in Fig.4.24. Clearly the optimal distribution differs greatly

from the "clean wing" distribution. Application of this distribution would

restore much of the loss associated with the slipstream swirl.

Using CADOS for chordwise pressure distribution specification implies the

definition of a suitable object function and appropriate constraints reflecting

the sense in which the target should be optimal. But first of all an appropriate

pressure distribution representation should be chosen. Concentrating on

transonic flow and pioneering with application of CADOS a number of relatively

simple shape functions has been selected leading to a representation as

schematically depicted in Fig.4.26. This representation involves a limited

number of design variables in the form of coefficients and exponents.

As an example of the practical applicability of CADOS some results may be shown

of case studies using the above representation and determining drag by means of

boundary layer calculations based on Thwaites method for laminar and Green's

lag-entrainment method for turbulent flow.

The first example is a demonstration of the capability to design high lift

airfoils. The intention was to maximize lift by changing only the upper surface

pressure distribution for a fixed arbitrarily chosen lower surface pressure

distribution under the additional constraint that the flow had to remain

attached and subsonic everywhere on the airfoil.

Keeping Liebeck's results for the so-called turbulent rooftop in mind, at the

first optimization attempt the shape function coefficients were constrained to

producing a Stratford type pressure recovery. This resulted in the rooftop

solution of Fig.4.27 comparing reasonably well with Liebeck's solution as

presented in Ref.32. Application of CADOS with the upper surface pressure

distribution entirely free led to a solution with a slightly higher lift

coefficient represented by the dashed line in Fig.4.27. To conclude this

exercise the NLR airfoil design system of Ref.17 was applied to determine the

corresponding geometries. The results are presented in Fig.4.27, showing that

the second pressure distribution leads to a somewhat gentler airfoil shape.

The second example that may be presented here concerns transonic low drag

design. At first, calculations were performed in order to check the suitability

of the shape functions for representation of realistic transonic pressure

distributions. To this end CADOS was used to determine the best fit to a

L pressure distribution calculated by means of the VGK code of Ref.24 for a given |

airfoil.The result is presented in Fig.4.28 . Apparently the discrepancies are J

largest in the shock region and at the nose.
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_ubsequently it was attempted to determine a new target pressure Idistribution

aiming at a decrease of the drag with the "best fit" as starting point. Fig.4.29

shows the result, designated "new target" According to the CADOS boundary layer

calculations this target should lead to a drag decrease of 5 counts.

Again the NLR airfoil design system was applied for determination of a new

airfoil shape, upon which VGK was used for determination of the actual pressure

distribution. The latter result is presented in Fig.4.30 in comparison with the

original pressure distribution. The discrepancies between the shape function

representation and the actual pressure distribution mentioned above may be

responsible for the fact that here only 3 counts instead of 5 counts drag

decrease is predicted. Nevertheless, the present example may be considered as

illustrating the usefulness of CADOS in transonic airfoil design.

5.CONCLUDING REMARKS

A survey has been given of contemporary practice of aerodynamic design in The

Netherlands, focusing on airfoil and wing design. It will have become clear

that the application of analysis and design codes has become common practice in

aerodynamic aircraft design procedures.

As has been mentioned before, work is in progress at NLR to extend the design

system for wings in subsonic flow for application to wings of wing-body

combinations in viscous transonic flow. A somewhat longer term development is

the extension of this system to application for multi-point wing design. This

work has been started within a BRITE/EURAM project sponsored by the European

Community and aims at the development of a method for the design of wings in

transonic flow, such that at a number of different flow conditions the wing

(without changing the geometry) will operate according to preset requirements.
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TABLE I : The Fokker i00 wing development (Ref.l)

Wing 1 : The basic F-28 wing, defined by four wing sections connected with

straight generators

Wing 3 : Wing 1 with 0.75 m span extension ( defining section V)

Wing h : Wing 1 modified with :

forward extension of the chords of sections I,II and III

modification of the front part of sections I and II

1.5 m span extension

Wing 5 : Wing 1 modified with :

1.5 % chord extension and modified front part of section IV

straight leading edge at outer wing defined by section II and IV

5 % chord extension of section I

1.5 m span extension

Wing 6 : As wing 5 but with 9% chord extension of section I

Wing 8 : Wing 5 modified with rearward chord extension and rear camber

Wing i0: Wing 8 modified with :

0.75 m span extension

straight leading edge between section III and V leading to

kinks at sections II and III

new front part of section IV

Wing ii: Wing i0 modified with :

new lower leading edge of sections III and IV

Wing 12: Wing Ii modified with :

new leading edge of section II

L J
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Fig. 1.1 Fokker 1O0prototype - ref. 4
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Fig. 1.3 Fokker F-28
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ABSTRACT

In the present paper, an overview of the aerodynamic aircraft-design methods and their
recent applications in Japan is presented. One of the design codes which was developed at the
National Aerospace Laboratory (NAL) and widely used now is mainly discussed, and hence,
most of the application examples are the results of the collaborative works between heavy
industries and National Aerospace Laboratory. Wide variety of applications in transonic to
supersonic flow regimes are presented. Although design of aircraft elements for external flows
are the main focus, some of the internal flow applications are also presented. Recent applications
of the design code using the Navier-Stokes and Euler equations in the analysis mode include the
design of HOPE(space vehicle) and USB(upper surface blowing) aircraft configurations.

INTRODUCTION

With the advent of supercomputers having fast processors and large memories,
CFD(computational Fluid Dynamics) is progressing at incredible speed. Three-dimensional
Navier-Stokes simulations, which were very rare ten years ago even for relatively simple body
configurations are now common at any conference on fluid dynamics[I,2,3]. Flow field
simulations over complex body configuration are not difficult task once the geometry data is
given. We can learn a lot of flow physics from the simulated results that may be helpful for re-
designing the body configuration. Although such simulated results give us a lot of information
about the flow field, they would not tell us how to modify the body configuration for the better
design. One way to do it may be a trial-and-error type approach where conducting a large
number of simulations is necessary, which is still not feasible even with advanced

supercomputers. So-called design programs for determining the optimum geometry may be as
useful as analysis programs simulating the given flow fields.

There has been a strong effort to develop both airfoil and wing design methods for many
years. Unfortunately, the progress is not as remarkable as analysis methods.This is true in Japan
as well as in the United States. CFD technology has been remarkably improved last several years,
but on the other hand, no much progress was made for the design methods and code

development. Only one remarkable progress in Japan was the design method developed by
Takanashi at National Aerospace Laboratory in 1984. His method is "iterative correction method"

L based on the perturbation equations of potential flows. In this method, the geometry correction is
made iteratively to reduce the difference between the target pressure distributions and the -
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r pressure distributions that is obtained by an analysis code. One of the advantages of this code is |

"3

that any analysis code can be incorporated because analysis code is sort of black box for the
geometry correction method. Analysis codes are not necessarily restricted to the potential codes.
Even the Navier-Stokes codes can be used although the convergence is not guaranteed. Because
of the flexibility and robustness of the code, it has been used for wide variety of applications.
Now, most of the aircraft industries in Japan use this computer code and applied it to the practical
problems.

In the present paper, Takanashi's design method and its applications are presented. Since
this is a paper giving an overview of the Japanese activity, only the conceptual explanation is
given about the method itself, and the focus is mainly laid on the demonstration of the
applications to a wide variety of the flow fields.

DESIGN METHODOLOGY

Backmound

There are several approaches for the design problems. One way may be the numerical
optimization using an analysis code. Wing design method was proposed by Hicks in 197614],
and the research has been extensively conducted since then. In this optimization technique, a
wing section with, for instance, minimal total drag under some constraints such as a specified lift
and maximum thickness is sought by using the analysis code and the optimization code
iteratively. Recently, Jameson[5] proposed an efficient method using a control theory. There
exists so-called "inverse method" of wing design in which wing geometry is determined to realize
the specified pressure distributions. This type of approach was used for wing design by
Henne[6] and for wing-fuselage design by Shankar[7] for example. The approach used by
Takanashi may be different from either of the approaches above. This is an iterative residual
correction method similar to the works by Burger and Brooks[8], Davis[9], and McFadden[ 10]
for the two-dimensional problems. The advantage of this approach is that only minimum effort in
developing the geometry correction code is needed to decrease the pressure residual, while an
analysis code is retained in its original form. In the next section, the formulation is briefly
described.

Formulation of Inverse Problem and Iterativ_ Procedure

Only a concept of the design method that was developed by Takanashi in 1984 is briefly
described. More details can be found in his original and the following papers[11,12,13].

First, inverse problem is defined. Here the nonlinear full potential equations are taken as
basic equations, and in the formulation process, small perturbations are assumed. Thus, the
applicability is restricted to the flow field without shock waves or with weak shock waves. After
some manipulations, integral equations that relate the geometry change and the surface pressure
change are formulated. Iterative design procedure is formulated using the integral equations
obtained above. Body (wing, wing-body complete aircraft etc.) surface is paneled into segments
and the integral equations are discretized and numerically solved to find the necessary amount of
geometry modification once the difference of required and calculated pressure difference is
defined. Since we have the target pressure distributions which is required, we can define the
difference using some analysis code.

The iteration process can be defined as follows. First, we assume initial body geometry,
then calculate the surface pressure distributions using some analysis codes. Since we know the

L require pressure distributions, we can calculate the difference between the required an calculated J
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F pressure distributions by a simple subtraction. Second, necessary body geometry change can be

calculated using the integral equations which are discretized. Improved body geometry is now
defined and the analysis code is once again used to calculate the pressure distribution in the
second approximation. The iteration process is schematically shown in Fig. 1. One significant
feature of this method is that analysis code is son of "black box" and any type of analysis
methods can be used. The Euler, Navier-Stokes, even the experimental measured data can be
used to supply the pressure distribution data. They may be used so far as there occur no strong
shock waves and the difference between the target and calculated pressure distributions is not
large. Although there is no guarantee for the convergence in the case of some analysis code such
as Euler and Navier-Stokes codes where perturbation between the geometry and surface pressure
may not be uniquely defined because of the strong nonlinearity, many examples shown below
indicate that the applicability of the present method is much wider than the theoretical prediction.

APPLICATION EXAMPLES

Transonic Wing Design

In Takanashi's original paper[11], applications to a couple of transonic wing design
problems were presented. One of them is shown here. Figure 2 shows the original geometry data
and the computed pressure distributions (dotted data). Also plotted is the target (specified)
pressure distributions (solid lines). The freestream Mach number is 0.74 and the wing planform
was fixed with 9.92 aspect ratio, 18.4 deg. sweep angle. The trailing-edge kink location is 30 %
semispan. The target pressure distributions were determined to realize the same chordwise
pressure distributions at any span station between the wing root and tip. Such pressure
distributions are usually called "isobar pattern" because straight lines appear on the surface
pressure contours over the entire wing surface. The chordwise pressure is determined by the two-
dimensional airfoil design code, and its characteristics were investigated by airfoil analysis and
wind-tunnel testings. Analysis code used in this example was "FLO22", nonlinear full potential
code developed by Jameson. To avoid the monotonic increase of the thickness of the root section
in the iteration process, the root section profile was fixed throughout the iteration process in this
example.

Figure 3 shows the sectional wing geometry and the pressure distributions obtained after
ten iterations. The target pressure distributions are almost realized. In Fig. 4, the pressure
contours on the upper surface of the wing are plotted. Chordwise pressure distributions are
almost the same for any spanwise station except close to the wing root section. Note that the
computational time for the design mode is negligibly small compared to that of the analysis code
in the iteration process.

To show that the design code can be combined with any analysis code, several
computations for the design of transonic wings were carried out[12]. One of the computations
using the analysis code[ 14] developed at the National Aerospace Laboratory is presented next. In
this example, the boundary layer code also developed at the NAL[15] was incorporated. Only
four iterations were necessary for the convergence. The isobar pattern is realized from the root
section to the wing tip section in the computed result as is shown in Fig. 5. Mitsubishi Heavy
Industries (MHI) used Takanashi's code and designed many practical wings for transonic
transport aircraft[16]. As a design strategy, isobar pattern was required, and the final wing
geometry was determined considering the off-design requirements about buffet, pitch-up and
else. As an example, Fig. 6 shows the chordwise pressure distributions to be realized at each
spanwise station. The Mach number on the design point was 0.77, and the CL was 0.65. The
aspect ratio was I0, the sweep angle was 18 deg. and the tapered ratio 0.3 (see Fig. 7). The
initial and the final pressure distributions along withthe target pressure distributions are shown in

L Fig. 8, and the final wing where thickness and the twisted angle are modified near thegeometry J
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Ftip tO satisfy the off-design requirements is shown in Fig. 9. The wind tunnel experiment was

conducted to check the aerodynamic performance of the designed wing. The measured Cp
distributions are presented in Fig. 10. Reasonable agreement is observed between the target and
the measured pressure distributions. Figure 11 shows the comparison of the pressure contours on
the upper surface of the wing. Here again, good agreement is obtained between the computed and
measured contour plots even though small discrepancy is observed near the root and tip.

At the time of this design code development, there was a collaboration between JADC
representing Japanese industries and Boeing company to develop a new transonic aircraft. The
project was called 7J7 in the United States, and YXX in Japan. Although this project was retarted
because of the market change, there left is a lot of technology accumulations for the Research and
Development. Under this project, many wing configurations were designed by Mitsubishi Heavy
Industries again using Takanashi's code. Some of the designed wings were used for the
simulations using the Reynolds-averaged Navier-Stokes equations[17,18] and the computed
results were compared with the corresponding experiments[19] to confirm the aerodynamic
performance of the designed wings. These examples will be shown at the conference.

7

Airfoil Design Using Navier-Stokcs Equations

As has been mentioned above, the analysis code is sort of a "black box" and it can use any
analytical method even though the convergence is not necessarily guaranteed. Hirose et al.
coupled Takanashi's design code with two-dimensional Reynolds-averaged Navier-Stokes
code[20]. With specifying the same pressure distributions at each spanwise station for large
aspect ratio wing, the three-dimensional design code was incorporated with the two-dimensional
Navier-Stokes code for the design of two-dimensional airfoil. One of the application examples is
shown here. Shockless supercritical pressure distributions at CI= 0.6 was specified as a target
and the initial geometry was set up to have strong shock wave. The freestream Mach number is
0.75 at the Reynolds number 13 million. The initial, target and computed Cp distributions along
with the initial and final airfoil geometries are plotted in Fig. 12. The target Cp distributions are
almost realized in ten iterations.

Two Dimensional Tran_nic _ascades

Takanashi reformulated his original design code and developed a two dimensional cascade
design program in 1986. The analysis code in this case is a Euler code using explicit time
integration. Even after 10 iterations, fully converged solution was not obtained. However, the
pressure is becoming closer and closer to the target pressure on every iteration stages. The
solution after 10 iterations is presented in Fig. 13 along with the cascade geometry. Takanashi
insisted in his paper[13] that the convergence would be much improved by optimizing the
parameters in the design process for cascade flows.

Additional Applications

Recently, with the rapid progress of supercomputers, the design code above was
combined with three-dimensional Navier-Stokes codes and applied to more difficult cases. Both
Mitsubishi (MHI) and Kawasaki (KH/) Heavy Industries applied it to the design of HOPE( H-II
Rocket Orbiting Plane). The HOPE is a space vehicle that NASDA (National Space Development
Agency) is currently developing. Both companies were interested in redesigning the tip fin of the
configuration. MHI analysed the transonic flow at Mach number 0.9 with 5 degrees angles of
attack and the Reynolds number 2 miUion[21]. They found by the Navier-Stokes simulations that
the flow field surrounded by the fuselage, main wing and tip f'm became almost channel flow and

L strong shock wave and associated flow separation occured. The Takanashi's design code was
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r iteratively usM with the three-dimensional Navier-Stokes code and the good improvement was

obtained after five iterations. They used half a million of grid points for the Navier-Stokes
analysis and the computer time required for each iteration step was 5 hours for the analysis mode
and 0.2 hours for the design mode Thus, in total, 26 hours were necessary even with the Fujitsu
VP400, one of the most advance supercomputers at that time. The initial body configuration is
shown in Fig. 14 in terms of the computational grid. The initial and the final chordwise pressure
distributions on the tip fin are presented in Fig. 15 with the corresponding sectional geometries.
Although the target pressure is not precisely realized, there is obvious improvement such as
disappearance of the suction peak. The close-up views of the near-surface streamlines obtained
from the computed flow fields both for the initial and obtained configurations are presented in
Fig. 16. Shock wave is weakened and the flow separation on the tip fin surface disappears in the
final configuration.

Kawasaki Heavy Industries tried to modify the pressure distributions over the tip fin to
satisfy the buffet boundary by re-designing the tip fin using Takanashi's design code with the
Euler code[22]. About 200,000 grid points were used in the analysis mode and total computer
time for five iterations was about 5 hours. In this example, the freesteam Mach number is 0.9 and
the angle of attack is 6.5 degrees. The original and designed sectional geometries, and the initial
and final Cp distributions along with the target Cp are presented in Fig. 17. Remarkable
improvement is observed although the target Cp distributions are not realized also in this
example.

Kawasaki Heavy Industries also applied the design code for the redesign of the USB
(Upper Surface Blowing) wing configuration of the STOL[23]. The planform of the USB is
shown in Fig. 18. In this example, Isobar pattern is the target, but the wing section is fixed near
the nacelle and the tip to avoid resulted very thin wing section to weaken the shock wave. Figure
19 shows the sectional Cp distributions. The strong shock wave that appeared on the initial
configuration is weakened and the target Cp distributions are almost realized.

Another aircraft company named Fuji Heavy Industries developed theft own design code
based on the Takanashi's method. They applied it to the design problem of wing-fuselage
combination[24]. The analysis code was full potential code. The target pressure distributions
were such that realize the isobar pattern on the wing surface and are the same as the initial ones on
the fuselage. The initial and final Cp distributions and the surface pressure contours are plotted in
Fig. 20. The computed Cp in the lower surface realizes the target Cp, but still some discrepancy
exists on the upper surface. However, compared to the initial Cp distributions, improvement is
obvious. The final configuration is shown in Fig. 21.

SUMMARY

An overveiw of the Aerodynamic aircraft-design methods and theft recent applications in
Japan was presented. One of the design codes developed at the National Aerospace Laboratory
(NAL) is mainly discussed because of its popularity in Japan, and wide variety of applications
were presented from transonic to supersonic flow regimes. This design method uses inverse
design code and analysis code iteratively to realize the required pressure disbributions, and thus
any anaysis code can be used. Some of the examples shown here used Euler and Navier-Stokes
code as an analysis mode. These application examples indicated the capability and feasibility of
the design code. The fact that many companies currently use this design code for practical
problems and obtain successful results proves it.

This paper is written based on the results that the In'st author has noticed. There may be

more activities in Japan that can not be included in the paper. Unfortunately many of the papers in

_the reference list are written in Japanese. However, some of the important papers such as
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F Takanashi's original paper are written in English and the authors hope that the list of reference in

this paper is useful for any researchers for the design problems.
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ABSTRACT

An aerodynamic optimization procedure, dedicated mainly to mi-

nimize the drag to lift ratio of a complete configuration: wing -

body - tail, in the presence of some engineering and logical res-

trictions is described. An algorithm conceived to search the mi-

nimum of a hypersurface with 18 dimensions, which define an airc-

raft configuration, was developed, without using a gradient meth-

od. The obtained results, show that, at least, from the aerodyna-

mic point of view, the optimal configuration is one of canard ty-

pe, with a lifting fuselage.

I. INTRODUCTION

There are many arguments which plead for the using of a global

and multicriterial optimzation procedure to design a transport air-

craft. An usual practice, for the establishment of the aircraft's

shape, adopted especially by the prudents, is the statistical pro-

cessing of the data describing all the aircrafts of that class.

Finally, after years of research, design, manufacture, testing

and certifying, an out - of - date aircraft results, at least with

two generations behind: one which was in service when the design

of the new aircraft begun, and the second, which 5tatted at the

same time, but has used the latest research results correctly

forecasted.

To predict exactly the needs in the domain of passengers air

transport, for the date when the new built aircraft will operate,

taking into account all the economical, social and scientific

conjunctures, a global and multicriterial optimization procedure

is required. A new aircraft becomes competitive versus other air-

Crafts of its class, if the fuel consumption reduction is obtai-

ned not by affecting the passengers security and comfort and by

adding laborious maintenance operations. Following these princi-

pial ideas, in the present paper we have tried to optimize, only

from the aerodynamic standpoint, a short / medium - currier con-

figuration aircraft for moderate subsonic speeds.

Here, by "optimal configuration" we understand the configura-

tion which gives the best answer to a certain purpose. A more

realistic objective function to be minimized in the presence of

the engineering and airworthiness requirements, can lead to a

competitive aircraft, providing benefits, both for passengers and

,Eompanies.
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Another argument which demands the adoption of a global opti-

mization procedure in the design process is the paradox, valid at

least as far as our personal experience is concerned, that while

aerodynamics, thermodynamics and stress analysis use the most soph-

isticated computing methods, their results are used mainly to deci-

de whether a previously shaped by an "all experienced" project

authority configuration is competitive, and not from to begining

in the process of giving that configuration the besl shape for a

certain purpose.

II. THE AERODYNAMIC ANALYSIS

For the global aerodynamic characteristics (CL, CD, Cm) of a

complete wing - body - tail configuration, a panel method [1]

was used. Two rather hard approximations were adopted in order to

ensure minimum CPU time for the analysis procedure:

a) Following the idea introduced in [2], the configuration

is replaced by its horizontal projection (plane xOy "shadow"). The
entire thin surface of this projeclion is divided into a number of

triangular or quadrilateral panels, associated, each of them, to

a horseshoe vortex filament.

b) For the friction drag, the flat plate assumption is ado-,

pied and consequently, on the wetted area the friction coefficient

Cf is calculated as a function of the Reynolds number on each sur-

face strip (without detachment).

The theoretical results obtained on the idealized configura-

tion of Fig. 1.b. were compared with the experimental dala mea-

sured in the Trisonic Wind Tunnel of the Aviation Institute of

Bucharest, Romania, on a calibration model (Fig. 1.a).

The comparative diagrams CL, CD, Cm versus incidence (Fig.2)

demonstrate that, in the domain of the small incidences, the ana-

lysis is in good agreement with the experiments. This meets our

interest because the above - mentioned optimization will be per-

formed at the cruise regime.

III. THE OPTIMIZATION PROCEDURE

Considering the results of the aerodynamic analysis as accep-

table, the corresponding algorithm can be included into an opti-

mization loop.

A generic aircraft configuration was defined by 18 geometrical

parameters (Fig. 3) as follows:

L

xl - the span of the surface I

x2 - the chord ratio of the surface I

x3 - the root chord of the surface I

x4 - the span of the surface II

x5 - the chord ratio of the surface II

x6 - the logitudinal position of wing apex |

x7 - the logitudinal position of the horizontal tail apex J
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[
x8 - the wing span

x9 - the wing chord ralio

xlO the chord ratio of the horizontal tail

xll - the span of the horizontal tail

×12 - the wing sweep angle

×13 - the horizontal tail sweep angle

×14 - the root chord of the horizontal tail

×15 - the incidence of the surface I

×16 - the incidence of the horizontal tail

×17 - the wing incidence

x18 the root chord of the wing

The geometrical characteristics of the vertical tail and the di

hedral angle of the wing were done as input data.

The incidence of the surface II was assumed equal to that of the

surface I.

These 18 parameters are the 18 dimensions of a hypersurface, des-

cribed by the objective function "F" which represents a sum of c_'i-

teria of minimization.

Performing a statistical evaluation over a class of 30...50 pas-

senger aircrafts, the overall mass of an aircraft was deduced to

be estimated by:

G = 1OO*Npax + Ka_Sa + Kt*(Sht + Svt) +Kf_Sf + Ooi ( I )

where:

Npa× - the number of the passengers

Sa

Sht

Svt
Sf

Got

Ka

Kt

Kf

- the effective wing area
- the effective horizontal tail area

- the effective vertical tail area

- the xOy projected area of the fuselage

- the inert mass of the aircraft ( _ 7700 daN fo_- a

50 pax. and = 5500 daN for a 30 pax. aircraft)

- the specific weight of the wing (_ 58.3 daN/m )

- the specific weight of the tails (_ 33.8 daN/m )

- the specific weight of the fuselage (_ 40 daN/m )

In the present study the criterion of optimization was related

to the minimizaton of the CD/CL ratio satisfying simultaneously the

following constraints:

- the pitching moment My with respect to the gravity center

must be zero or very close to this; the position of the

gravity center is recalculated every time the configura-

tion changes.

- the lifting force must be equal to the overall weight of

the airplane in cruise flight.

- the position of the wing and tails apexes must be loca-

ted within the fuselage length.

h
because "in an aircraft, the main part of the structu o

re's weight is given by the material which ensures the I
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F
bending moment at the wing-body embeding" [3], an impor-

tant restriction was to put a limitation on the bending

moment at the wing-body junction. In the absence of this

constraint the wing has the tendency to get a quite la__-

ge aspect ratio, typical for sailplanes.

There are many objective functions Fi(X) for a class of aircra

fts which can be minimized or maximized. For example, [4], with

only four parameters (wing area, sweep angle, aspect ratio and the

relative thickness of it's airfoil) a configuration was optimized

with four objective functions:

FI(X) - ramp weight (minimize)

F2(X) - mission fuel (minimize}

F3(X) - lift to drag ratio at constant cruise Mach number

(maximize)

F4(X) - range with fixed ramp weight (maximize)

or some combination of these objective functions.

Mathematically the optimization procedure means to search and

find the minimum of the above-mentioned hypersurface in the pre

sence of a number of given restrictions. The minimization problem

with the restrictions "g(X)" is transformed into one without res-

trictions using "the penalty functions method" [5]. Each restric-

tion is associated with a penalty function. If one restriction is

violated, the corresponding penalty function is set to a great va-

lue; thus the objective function becomes greater (far from mini-

mum). If the restriction is satisfied, the penalty function is set

to zero: so it doesn't affect the value of the objective functio,_

F(X).

F(X) = CD/CL + _-_-g_(X) = minimum ( 2 )

X = X( xl, ...... xlS) ( 3 )

For the effective searching of the minimum of the objective

function F(X) the "one dimensional searching method" was adopted

[5].

First, for the "starting configuration" (meaning the configura-

tion determined by the initial values of the 18 optimization para-

meters) a first value of the objective function is calculated.

Than, one of the parameters is altered by a step "r", while all

the others are kept constant:

xi= x_+ r.x i

0 < r < 1

(4)

The aerodynamic analysis module is called and the value of the

objective function F(X) is computed. If its value is smaller than

the previous one the alteration of the parameter "x_" is continued

until the value of F(X) begins to rise. In that moment the parame-

ter x_ is altered with -r.xi and the process of parameter x_lalte-

L ration is initiated (Fig.4). When the optimization loop, contai_
ning all the 18 parameters is ended, the procedure is repeated i
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_ refined r, as long as r is superior to a selected error level. |
The major disadvantage of this method is that a local minimum i

usually reached by altering only some of the parameters and it is

almost impossible to leave it. Besides of the parameters hierarcy,

which is not so easy to establish, the procedure was modlfied in

two different ways, in order to avoid the local minima:

a. At a certain value r the steps towards the minimum were

limited at only two per parameter, even if the value of the objec-

tive function is still decreasing (Fig.5a).

b. For every parameter the sign of r ls determined for

which the objective function F(X) decreases. Then, all the parame-

ters are simultaneously altered as long as F(X) decreases. When an

increase in the value of F(X) is noticed the sign determination

process is initiated again, followed by another phase of block al
teration of all the parameters (Fig.5b). In this way, the aerody-

namic analysis module is called once for a configuration resulted

from the simultaneous alteration of all the parameters, thus sav-

ing computer running time. This modified version of the optimiza

tion procedure is somewhat similar to a gradient method but it do-

esn't need the calculation of the parameter_s gradient vector.

IV. RES_JLTS AND DISCUSSION

The optimization procedure described above was transferred into

a FORTRAN computer code and several tests were performed to cer-

tify its validity.

Among these tests, for example, the "FOKKER 27 - Friendship"

airplane, quite repreentative for the 50 seats class, was adopted

as a starting configuration in the idealized manner represented

in Figure 6, by the lowest possible number of panels, to permit

a fast aerodynamic analysis.

Denoting by "classic configuration" the wing-tail arrangement

in which the wing is placed ahead of the tail and by "canard

configuration" the well known tail in front of the wing arran-

gement, the opiimzation computer code was applied and the resul

is finally obtained are illustrated in Figures 7-9.

It can be noticed (Figure 7) thai the aerodynamic (CL - CD)

characteristics of the classic-optimized configuration are not much

different from those classic - initial configuration, this pro

ving that the F-27 airplane is aerodynamically well designed.

In the same time, the canard - optimized configuration has ob

viously superior aerodynamic characteristics, when compared to

the initial (unoptimized) canard configuration (Fig. 8) and even

compared to the classic - optimized configuration (Fig. 9).

During the optimization process an interesting fact was consi

dered to be the tendency of the fuselage to widen its rear end,

taking a shape somewhat similar to a small aspect ratio gothic

delta wing, thus increasing its contribution to the global lift

of the airplane.

We must stress thai the aerodynamic analysis module and even

the optimization algorithm used in the optimization procedure e>:-

L J
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mpled here are, of course, not the best tools according to to-
day's achievements, and any improvements in these directions co

uld lead to better results at the end of an optimzation loop.

Our choice was determined by the inherent limitations set by the

presently available to us, computer equipment.

The CYBER 170/720 computer was used to perform the calculations

which lead to the results presented here. A single call of the

aerodynamic analysis module requires about 3 seconds CPU time fob-
an idealized configuration of 40 panels (Fig. 6). To reach the

optimum shape, at the moment when the relative error on "r" is

less than 0.0001, some 260-300 calls of the aerodynamic analysis

module are usually necessary.

The optimization code was used to define some of the principal

features of the external shape for a few other short/medium ran

ge commuters.
Such an example, reffering an airplane with a 70 passengers ca

pacify, flying at 650 km/h, 6000 m of altitude, is represented in

Figures 10 a,b. The thickness was added to complete the shape of

the idealized optimum configuration. Such a "thick" configuration

is suitable for a much more accurate aerodynamic analysis, perfor-

med with better computer codes and even in the wind tunnel, in

order to obtain a realistic final verdict on the optimization pro-

cedure and its results. The rear end wide fuselage is quite noti

ceable. Apart the aerodynamic gains, this type of fuselage can

provide the passengers a better comfort, giving the opportunity

for a cabin arrangement similar to that of a wide body airplane

(Figure 11).
An indirect confirmation of these solutions, analysed since

1988, [6], was offered by a recently published paper [7], which

reportss that studies are made to use an elliptical fuselage for

a long range, high capacity airliner.

I
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Fig.l.a. The calibration mo-
del for wind tunnel testing.
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Fig. lO.b Another general view of the optimized configu-

ration of Fig. 10.

Fig. 11. A possible seats arrangement in a cabin of an opti-

L mized short/medium currier airplane. J
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ABSTRACT

The Modified Garabedian-McFadden (MGM) design procedure was incorporated into an

existing 2D multigrid Navier-Stokes airfoil analysis method. The resulting design method is

an iterative procedure based on a residual-correction algorithm and permits the automated design

of airfoil sections with prescribed surface pressure distributions. The new design method, MG-

MGM, is demonstrated for several different transonic pressure distributions obtained from both

symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code

are compared to the original configurations to assess the capabilities of the inverse design method.

INTRODUCTION

The aerodynamic design of aircraft components is often carried out by means of one of the

following four approaches: a) cut-and-try analysis, b) indirect methods, c) optimization techniques,

and d) inverse design techniques. Unlike the cut-and-try method, the latter three design techniques

are far more automated, and can significantly reduce the overall engineering effort and calendar

time required for developing aircraft components and configurations with improved aerodynamic

performance or aerodynamic interference characteristics.

A common design approach is to specify, a priori, surface pressure distributions that have fa-

vorable aerodynamic characteristics at given freestream conditions. For example, an appropriately

chosen pressure distribution can be used to achieve certain desired lift and moment coefficient

goals, while a "weak-shock" or "shock-free" distribution can be used to minimize wave drag

performance penalties. The automated design procedure is then used to generate, as efficiently

as possible, the configuration geometry which will cause the specified pressures to exist on the
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designed component. Obviously, the use of these automated design methods requires that the

aerodynamicist can specify, a priori, the desired pressure distributions for a particular application.

The most widely used aerodynamic design procedures for transonic-flow applications seem to

be based upon potential-flow Computational Fluid Dynamics (CFT)) methods.l-5 This trend is most

likely due to the relative low cost, in terms of computer-resource requirements, that is demonstrated

by CFD methods based on the Transonic Small Disturbance (TSD) equation or the Full Potential

equation (FPE). ]n the past decade, however, considerable interest has been demonstrated in the

use of higher-order CFD methods such as the Euler equations and the Reynolds-averaged Navier-

Stokes equations (RANS) for aerodynamic analyses in a variety of applications. Thus, them is

now an increasing interest in also developing design procedures based on these higher-order CFD

formulations. 6-]° If used during the design process, these higher-order CFT) methods will help the

aerodynamicist to account for the occurrence of fluid dynamic effects or phenomena which are

not routinely predictable using potential flow methods.

In reference ! i, Garabedian and McFadden described an inverse aerodynamic design procedure

which they demonstrated using an existing FPE aerodynamics code. Their design method is based

on a residual-correction algorithm, which we will refer to here as the GM method, and can be

used to generate aerodynamic surfaces with prescribed surface pressure distributions. In reference

12, Malone, et al. presented a M__odified Garabedian M.....cFadden (MGM) design algorithm that

removed some limitations of the original GM technique. These authors applied the new MGM

design method, also using FPE aerodynamic analysis codes as a basis, to airfoil, axisymmetric

nacelle inlet, and 3-D nacelle inlet design problems. Later, Hazarika 13 and Sankar used a FPE

CFD method to apply the MGM procedure to the design of blended wing-body configurations.

In a recent effort, Malone, et al. 14 described the first use of the MGM residual-correction design

algorithm coupled with a 2-D Navier-Stokes solution procedure. Subsequently, a similar viscous-

flow design procedure using MGM was presented by Birckelbaw 15, and new applications of MGM

to multi-element airfoils using unstructured grids are under development. 16

The objective of the present research was to develop an accurate design method for viscous,

attached-flow, design problems which might be beyond the capability of potential-flow or Euler

methods, even those using interactive boundary-layer theories. Because the aerodynamic designer

normally seeks attached flow conditions, the method to be described is not expected to handle

separated flow design problems. However, by virtue of the fact that a Navier-Stokes method forms

the basis of the present procedure, the possible occurrence and extent of separated flow regions

can be directly computed and noted by the designer during the design process.

The following sections of this paper will describe the multigrid Navier-Stokes computational

procedure, the MGM design algorithm, implementation of the design procedure, and will also

present the results of several sample airfoil design problems.

NAVIER-STOKES SOLUTION PROCEDURE

The two-dimensional Navier-Stokes procedure used in the present work was originally de-

veloped by Swanson and Turkel. 17 Their method solves the Reynolds-averaged form of the full

Navier-Stokes equations (neglecting body forces and heat sources) on a body-fitted computational

grid. The mathematical formulation in generalized coordinates consists of a non-dimensionalized
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set of equations cast in a strong conservative form:

Qz + D_ + E, 7 = v"_M_Re; 1 (G_ + H,z) (i)

In Eq. (1), Q is the vector of conserved flow variables, which are themselves combinations

of the usual primitive variables, density (p), the components of fluid velocity (u, v), and the fluid

total energy (e). The quantity Moo is the freestream Mach number and, Rec is the Reynolds

number. The vectors D and E are the inviscid flux vectors in the _ and 7/ coordinate directions,

respectively. Also, the vectors G and H are the viscous flux terms in the corresponding coordinate

directions. The techniques used to solve Eq. (1) are given in Refs. 17, 18, and 19. Here we

present only a brief description of the Navier-Stokes solution procedure.

The spatial derivatives in the time-dependent Navier-Stokes equations are approximated

with central differences. A cell-centered finite-volume technique is used to obtain the spatial

discretization. For sufficiently smooth meshes the discretizations are second-order accurate.

Adaptive numerical dissipation terms are appended to the resulting semidiscrete formulation.

These terms, which are a blending of second and fourth differences, are included to provide

shock capturing capability and to give the necessary background dissipation for convergence. In

smooth regions of a flow field the dissipation terms are third order. The semidiscrete equations

are integrated in time with a modified five stage explicit Runge-Kutta scheme. On the first, third,

and fifth stages there is a weighted evaluation of the dissipation terms, which results in a good

parabolic stability limit. The physical diffusion terms are evaluated only on the first stage and

frozen for the remaining stages, without compromising stability. The decoupling of the temporal

and spatial discretization makes the scheme amenable to convergence acceleration techniques,

which are very beneficial in the computation of steady flows.

Three techniques are employed to accelerate convergence to steady state. The first one is local

time-stepping, where the solution at anypoint in the domain is advanced at the maximum time step

allowed by stability. This results in faster signal propagation, and thus, faster convergence. The

second technique is variable coefficient implicit residual smoothing. It can be regarded as simply

a mathematical step applied after each Runge-Kutta stage to extend the local stability range. The

third technique is multigrid. A multigrid method involves the application of a sequence of meshes

to a discrete problem to accelerate convergence of the time-stepping scheme. Successively coarser

meshes can be generated by starting with the desired fine mesh and eliminating every other mesh

line in each coordinate direction. An equivalent fine grid problem is defined on each coarse grid.

Appropriate operators are introduced to transfer information between the meshes. In the method

applied here a fixed W-type cycle is used to execute the multigrid strategy. The efficiency of the

multigrid process depends strongly upon effective high frequency damping characteristics of the

driving scheme. Such damping behavior is provided by the five stage Runge-Kuna scheme. The

good smoothing of the highest frequencies on the coarser meshes allows rapid removal of the low

frequency errors in the fine grid solution. There are two additional advantages of the multigrid

method. First, less computational effort is

is propagated faster on the coarser meshes

Figure 1 presents typical computed lifts

required on the coarser meshes. Second, information

due to larger allowable time steps.

and moments for an NACA 0012 airfoil to demonstrate

the capability of the multigrid algorithm for aerodynamic analysis applications. Turbulence closure

was obtained with the Baldwin -Lomax model.
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MGM DESIGN PROCEDURE

The MGM design method can be classified as a residual-correction technique, in which the

residuals are the difference between the desired speed distribution and the computed distribution.

Over the past decade a number of residual-correction methods have been developed, such as the

"wavy-wall" approach of Davis. 2° The methods differ primarily in the manner in which changes

in residual are related to changes in surface shape. The MGM algorithm itself consists of an

auxiliary PDE that is solved for incremental changes in surface coordinates during each design

cycle. The final aerodynamic shape is approached in a stepwise fashion through a cyclical iteration

between the flow solver and the MGM algorithm.

Mathematical Formulation

The MGM auxiliary PDE is heuristic in derivation and assumes that changes in surface

pressures are proportional to changes in airfoil surface slopes and curvatures. For two-dimensional

flow about an airfoil configuration, the auxiliary equation is given by

FoSl + F1S,t + _S_ = R (2)

where H is the residual, defined as R = q[ -q[. The quantities qc and qt are the computed

and target speed distributions, the coordinate x is the usual cartesian coordinate taken here to lie

along the airfoil chordline, and the coefficients F0, F1, and F2 are constants chosen to provide

a stable iterative process. Figure 2 shows how this auxiliary equation is typically incorporated

into existing flow solution procedures. The computed surface velocities are normally obtained

from partially converged numerical solutions to the flow equations under consideration at a given

value of time, t. During the design process, as qc approaches qt, the right-hand side of Eq. (2) is

reduced, and subsequent solutions of the auxiliary equation yield minimal changes in the airfoil

surface coordinates.

Next, Eq. (2) is written in terms of a correction to the airfoil coordinates, AS, by using the

temporal derivatives and choosing At = 1, so that Eq. (2) can then be written as:

FoAS + F,(ZXS), + = R (3)

Numerical Solution Procedure

The auxiliary PDE is solved by writing finite-difference expressions for each term of Eq.

(3). The computational grid used to solve this equation is the same grid used for the fluid-

dynamic equations, which for the present Navier-Stokes solver, is an algebraically generated

C-grid topology. Equation (3) is solved only along the airfoil surface, so that only the grid-line

clustering in the x or streamwise direction is of importance.

Assuming that there are a total of N computational points on the airfoil surface, Eq. (3) is

written for each of these points, i, where 1 < i < N. A typical equation evaluated at the i th

point on the surface is

A,A)_+I + BiA}_ + C,A)_-I = Ri (4)
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The coefficients Ai, B,, and C, are evaluated by means of standard finite difference expressions,

and A]q is the incremental change in surface coordinate, AS', at the i th computational point.

Equation (4) is evaluated at each point, i, around the airfoil surface, leading to a system of

equations with ?q unknowns, the A}' i values. At each point on the aerodynamic surface, A_] is

coupled to values at each neighboring point. The resulting algebraic equations form a tridiagonal

system that is solved for values of A]'i using the Thomas algorithm, zl

The design cycle is completed by updating the previous surface geometry, using the new

values of A)_ as follows:

);new = );old + Ayi, for i = 1 to JV (5)

Additional details of the MGM algorithm can be found in References 12 and 14.

Trailing-Edge Crossover

The present inverse procedure was developed to permit the design of complete airfoil surfaces,

including the leading-edge and trailing-edge regions. However, a completely arbitrary choice for

a target pressure distribution does not always result in a well-posed inverse design problem.

For example, Volpe 4 has presented a technique to satisfy the three integral constraints relating

target pressures and ffeestream conditions that are required to insure a well-posed problem in

compressible flow. As a possible consequence of using unconstrained target pressures, any inverse

procedure may produce an airfoil geometry which may exhibit trailing-edge crossover, or lead to

other unrealistic configurations.

Therefore an artifice is used in the present work so that the trailing edge thickness can be

controlled and so that any tendency of the airfoil to "fish-tail" is identified. If the geometry

is driven to a "fish-tail" configuration (trailing-edge crossover), a linear wedge is added to the

airfoil section so that the resulting trailing-edge thickness equals a predetermined value. It has

been demonstrated that this wedge technique can give some measure of control over the potential

manufacturability of airfoil configurations generated by automated design procedures. :2 It should

be noted that if the above wedging technique is required continuously during the design process,

the original target pressures should be examined for possible modification along the lines discussed

by Volpe 4. A technique such as this may be used to modify these pressure distributions in order

to rigorously provide for a well posed inverse design problem.

RESULTS

The MGM design procedure has been incorporated into the 2-D Navier-Stokes code described

previously. The resulting computer program is referred to here as the MG-MGM code. In this

section, we present three sample problems to illustrate application of the design method. Target

pressures are obtained from a known "target geometry", and the inverse design method is then

used to "reproduce" the original "target" configuration. These test cases demonstrate that the

starting geometry, or baseline configuration, used to start the design process does not have to be

"close" in thickness or camber to the target geometry.
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Several parameters were held constant for each of the sample problems. A "W-type" multigrid

cycle was used throughout, together with five successive levels of grid refinement. Also, five

"W"multigrid cycles were used between all airfoil geomeu'y updates (ie. one design cycle). The

computational C-grid used consisted of 321 nodes in the wrap-around, or (-direction (33 of these

in the wake region) and 64 nodes in the surface-normal, or rl-direction, for a total of 20,54-4 grid

points. The first 71= constant grid line was clustered to within 0.0001 chord lengths from the

airfoil surface. Since each point on the airfoil surface is allowed to move independently, each

can be thought of as an independent variable in the context of an optimization problem. For the

cases presented above, there were 257 such points around the airfoil surface.

For each case presented, a total of 160 design cycles (i.e. geometry updates) were specified.

The program was executed on a Cray 2 and each airfoil design required approximately 16 minutes

of CPU. Comparable Euler designs would require approximately 11 minutes on the same machine

for a similarly dimensioned grid.

Design Case No. 1

For Case No. 1, the MG-MGM code was first used in the analysis mode to compute the

surface pressures corresponding to an RAE 2822 airfoil at M_ = 0.8, an angle of attack, a, equal

to zero degrees, and Rec = 6,500,000, based on airfoil chord.

This calculated Cp distribution was then used as a target distribution for the MG-MGM code

operated in the design mode. The baseline airfoil used to start the design was an NACA 0012

section. As shown in Fig. 3, this airfoil is significantly different in shape from the RAE 2822

airfoil used to produce the target pressure distribution. In this figure, as well as others depicting

airfoil geometry, the vertical scale has been expanded.

Figure 4 compares the design and target airfoil pressures after 40 design cycles while Fig.

5 compares the design and target airfoil contours at this point in the design process. Figures 6

and 7 present the corresponding comparisons for pressure and geometry after 160 design cycles.

Figure 8 shows the results of a separate analysis computation performed after the design was

completed. This analysis started from uniform freestream conditions (impulsive start) and used

the grid produced by the designed airfoil contour given in Fig. 7. The comparison between design

and target pressures is actually better than that observed during the design process. This better

correlation exists because the pressures obtained during the design process are generated with only

a small number of multigrid cycles on the latest computational grid. The final design corresponds

to 160 updates to the airfoil geometry and 160 grid-generation steps. The MGM design algorithm

itself is not computationally intensive, and because a simple algebraic grid generation scheme is

also used in the present application, the computational overhead represents only a small fractional

increase over that which would be required to run the original CFD method in the analysis mode.

Design Case No. 2

For Case No. 2, the MG-MGM code was used in the analysis mode to compute the surface

pressures corresponding to an NACA 0012 airfoil at -Mo_ = 0.8, an angle of attack, a = 2.0

degrees, and Rec = 6,500,000, based on airfoil chord.

This calculated Cp distribution was again used as a target distribution for the MG-MGM code

operated in the design mode. This time the baseline airfoil was also an NACA 0012 section.
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However, during the design process, the freestream angle of attack was kept at o = 0.0 degrees.

This case was used to study the possible effects that a mismatch between specified pressures and

angle of attack might have on the design process. Figure 9 compares the baseline and target airfoil

pressures for this case. As would be expected for a transonic flight condition, the shock wave

locations are significantly different for the a = 2.0 targets and the o = 0.0 baseline condition.

Figure 10 compares the design and target airfoil pressures after 40 design cycles, while Fig.

11 compares the design and target airfoil contours at this point in the design process. As can be

seen in Fig. 11, after 40 design cycles the airfoil surface has already been rotated upwards to

adjust to the target pressure. Figure 12 presents a comparison of the geometry after 160 design

cycles. As in the previous case, a separate analysis run was performed to verify the airfoil design.

Figure 13 shows the results of the separate analysis computation performed after the design was

completed. This analysis started from uniform freestream conditions (impulsive start) and used

the grid produced by the designed airfoil contour given in Fig. 12. Finally Fig. 14 shows a

plot of the average Aq 2 versus multigrid work for the 800 multigrid cycles. This quantity drops

approximately two orders of magnitude during the design process and is used to monitor the

progress of the design algorithm.

Design Case No. 3

The final example problem, design Case No. 3, was chosen to demonstrate that large geometric

changes can be achieved with the MGM design algorithm. For this application, the target pressures

corresponded to an NACA 0012 airfoil at Moo = 0.8, angle of attack, a = 0.0 degrees, and Rec

= 6,500,000, based on airfoil chord. The baseline configuration used was an NACA 0006 airfoil.

A comparison of the target and final design airfoil shapes is shown in Fig. 15. A comparison

of the target pressures, and those obtained from a separate analysis (impulsive start) of the final

design configuration are shown in Fig. 16. In this example, an airfoil design was successfully

accomplished which required a 100% increase in airfoil thickness over that of the baseline airfoil

shape.

CONCLUDING REMARKS

The MGM design procedure has been incorporated into an existing multigrid Navier-Stokes

code. The computational efficiency of the method indicates that it is a viable tool for the

design process. The actual computational effort of this design method depends, of course, on

the complexity of the target pressure distributions chosen. Normally, aerodynamicists would seek

to eliminate shockwaves due to the impact of wave drag on performance. Previous experience

with the MGM algorithm t4 indicates that shock-free design applications require about 50% less

computational effort than for flows with shockwaves present. The transonic flow cases shown

here were picked, in part, to demonstrate the design algorithm's robustness and ability to respond

correctly to shockwaves in the flowfield. This feature is important because regions of sonic flow

may be created locally near regions of high airfoil curvature even at relatively low freestream
Mach numbers.

Because of the computer resource requirements, any Navier-Stokes based design method would

likely be used in combination with other, lower-cost design methods. For example, an initial

airfoil shape designed with a FPE method may prove to be an excellent starting configuration for
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a higher-order design approach. Used in this manner, the present Navier-Stokes inverse design

method should then be able to account for viscous flowfield phenomena that may not be detected

or predicted accurately enough by other methods based on FPE or Euler solution procedures.
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1. ABSTRACT ,i./) L

The objective of this paper is to compare two closely-related methods for aerodynan_ic design

optimization. The methods, called the "implicit gradient" approach and the "variational" (or

"optimal control") approach, both attempt to obtain gradients necessary for numerical optimization

at a cost significantly less than that of the usual black-box approach that employs finite difference

gradients. While the two methods are seemingly quite different, they are shown to differ

(essentially) in that the order of discretizing the continuous problem, and of applying calculus,

is interchanged. Under certain circumstances, the two methods turn out to be identical. We

explore the relationship between these methods by applying them to a model problem for duct

flow that has many features in common with transonic flow over an airfoil. We find that the

gradients computed by the variational method can sometimes be sufficiently inaccurate to cause

the optimization to fail.

]

2. INTRODUCTION

We first define what we mean by "analysis" and "design" in the context of computational

aerodynamics. In the "analysis problem" we seek to determine the aerodynamic flow, given a

description of the geometry of an airfoil or aircraft. In the "design problem" we seek to do the

inverse; given the flow, find the geometry that will produce it. Here, we are concerned with

methods for solving the design problem that are based on coupling solutions of the discretized

analysis problem with numerical optimization procedures.

In a previous paper [4] we compared three optimization-based approaches for solving com-

putational aerodynamics design problems. (Actually, the methods apply to many computational

physics design optimization problems.) The optimization methods are (i) the common "black-

box" method with finite difference gradients, (ii) a modification where the gradients are found

by an algorithm based on the implicit function theorem (hereafter called the implicit gradient ap-

proach), and (iii) an "all-at-once" method where the flow and design variables are simultaneously

altered. We also showed that the implicit gradient approach was very closely related to a partic-

ular "variational" or "optimal control" approach to design optimization that has recently attracted

interest (e.g., [5]). The purpose of the present paper is to further explore this relationship. (We

note that the close relationship between nonlinear optimization and optimal control has apparently

been known for some time[2][6]. However, this relationship appears to be little-known among

practitioners in applications disciplines utilizing these mathematical techniques.)

The finite difference approach to obtaining gradients is conceptually the simplest, but it is

ordinarily prohibitively expensive for practical problems, since it requires at least one solution

of an analysis problem for each design parameter. Both the implicit gradient approach and
/

tthe variational approach have the objective of determining gradients needed in an optimizatior_
.._1
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_procedure at a significantly reduced cost. Both approaches involve using "calculus-like" operations I

to derive the formulas employed in finding the gradients. As explained later, the procedures differ

in that the order of applying calculus, and of discretizing the continuous problem, are interchanged.

Because the implicit gradient approach applies to an already discretized analysis problem, it can be

used to "retrofit" many analysis codes to produce inexpensive gradients for design optimization;

see [7] for details.

3. MODEL PROBLEM

3.1 Continuous Analysis Problem

In [4] we showed how the steady flow of an inviscid fluid in a duct of variable cross-sectional

area A(,_), governed by the Euler equations, can (under certain circumstances) be reduced to the

single nonlinear ordinary differential equation

f_+g=0 (1)

where
A

f(u) ----u + [I/u, g(u, - - [Ilu),

u(_) is the fluid velocity, _ is distance along the duct, and _ and H are given constants. Here, the

subscript _ means differentiation with respect to (. While a much more careful specification was

given in [4], roughly speaking the continuous analysis problem is to find u, given a differentiable

area function A(() and the specified boundary values u(( = 0) and u(( = 1). These boundary

values are chosen so that the (weak) solution of (1) contains a shock.

3.2 Discrete Analysis Problem

Let the (-coordinate be discretized by a uniform, cell-centered grid with centers at (j =

(j - 1/2)h, A_ = 1/d, where d is the number of unknown grid values. Let Uj represent a

piecewise constant approximation to u on each grid cell. Then, a conservative difference scheme

for (1) is given by

fj+l/2 -- fj-1/2

wj -- + gj = o. (2)

Here the source term gj = g(Uj, (AJA)j) and we assume that the duct shape A(_) is given by a

piecewise cubic spline described in the B-spline basis with coefficients Dm for m = 1,2,..., M

and that A(0) and A(1) are fixed. (A_/A)j is obtained by evaluating the spline and its derivative

at (j. The boundary conditions on U are U0 = u(_ = 0) and U2+1 = u(( = 1). The fluxes

fj+r/2, as functions of Uj and Uj+I, are chosen to correspond to the Godunov, Engquist-Osher,
or Artificial Viscosity methods for numerically approximating hyperbolic conservation laws [4].

Once the discretization has been made, we are faced with solving a system of nonlinear

algebraic equations. The system is

Given: Din, m = 1,...,M (spline coefficients describing A(()).

Find: Uj satisfying

L w(u) =0. (31
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| Here W is the vector of discretized equations (2) for j = 1,2,..., J and the boundaryl

conditions on U.

3.3 Continuous Design Problem

We want to formulate the design problem as a minimization problem. It is:

Given: a desired (or goal) velocity fi(_).

lu GLet: h(u)= 7( ( )-fi(_))2 f(u)= f2 h(u)d_.

Find: A(_) such that u(_) satisfies (1) and f(u) is minimized.

3.4 Discrete Design Problem

We assume that a desired (or goal) velocity distribution Uj is given for each computational

cell in the analysis problem. Then we have

Given: Uj, j = 1,...,J.

Let: Hj = 1 /-J2 )2 J"_(Ui - ,F(U) = Y_j=I Hi"

Find: Din, m = 1,2,..., M (spline coefficients describing A(()) such that (3) is satisfied

and F(U) is minimized.

4. COMPARISON OF THE IMPLICIT GRADIENT APPROACH AND

THE VARIATIONAL APPROACH

In this section, we compare two closely-related, optimization-based approaches to finding an

approximate solution to the "Continuous Design Problem" posed above. In each case, function

values needed in the optimization are obtained by solving a discrete analysis problem and

evaluating a discrete form of the objective function (and constraints). The key question is how

gradients needed in the optimization are computed:

1. Implicit gradient approach. Discretize the problem first to obtain the "Discrete Design

Problem," then find a formula for the gradients by using the implicit function theorem.

2. Variational (or control theory) approach. Find a formula for the "gradients" for the

continuous problem (i.e., in infinite dimensional space). This formula involves the solution

of the analysis problem, and the solution of another differential equation called the adjoint

problem. Discretize both the forward and adjoint problems, then evaluate the formula to get

the gradient.

After the gradients are obtained, the function values and gradients are used in an optimization

procedure to improve the current estimate of the design variables. As can be seen, these ap-

proaches differ, essentially, in that the order of discretizing, and of doing calculus-like operations,

is interchanged.

4.1 Implicit Gradient Approach

The implicit gradient approach is a natural extension of the usual black-box method wherein

gradients needed in the optimization are obtained by finite differences. We thus first introduce the

black box method. We do so in a somewhat general setting, then specialize to the model problem.

We assume that the design problem has already been discretized. Let nu and r_ o be the
/

[_number of flow variables U and design variables D, respectively. (In the duct flow model[2
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Fproblem, the flow variables are the velocities, and the design variables are the spline coefficients[

describing the geometry.) Then we seek to solve

minimize F( D) ,

D C R nv

subject to C(D) > 0 ,

(4)

where F(D) is the objective function and C(D) is a vector of mo constraint functions. In the

black-box method, each evaluation of F(D) requires a solution by the analysis code.

For simplicity, the unconstrained version of (4) is considered below. However, the results

apply to the constrained problem as well.

As in our model problem, the function F will often be formulated in terms of the flow

variables U. In this situation, F is dependent on the design variables D in an indirect manner.

That is, the flow variables U are linked to the design variables D via the discretization of the

differential equations, since the flow variables will change when the geometry is altered. In the

general case, F will have both a direct dependence on D and an indirect dependence on D, due to

the dependence of U on D. Thus, one could consider the objective function to be F(U(D), D).

The term U(D) indicates that, given D, the value of U is obtained by solving an analysis problem.

Assume that the analysis problem has been discretized (as in Section 3.2) so that an analysis

consists of solving a system of nonlinear equations. In this case function evaluations for the

black-box method are computed as follows. Given a design specified by D, the analysis code

solves W(U) = 0, where U is the vector of nv flow variables and W is a vector of nu nonlinear

equations. Since the analysis problem is an implicit function of D it can be viewed as solving

W(U,D) =0 (5)

for U, given a design specified by D. When gradients are obtained by finite differences, each

component of D is successively perturbed, and (5) is re-solved to get a perturbed value of U.

We now review how gradients can be obtained without recourse to finite differences. Suppose

that U and D are considered as subsets of the nu + no vector X given by

X- ( U I D); (6)

the Jacobian (first-derivative) matrix of (5) is then

[ ]J = Ju I Jo , (7)

I

where d is nu x (nu + nD), JU is the nu x nu Jacobian with respect to the flow variables and

Jo is the nu x nD Jacobian with respect to the design variables. (The partitioned view of the

Jacobian implies nu >> no; this will usually be the case.) Note that Ju is sometimes available

in analysis codes, especially those based on Newton's method and variants. JD may, or may

not, be easily obtainable. (The availability of Ju and Jo in computational aerodynamics codes

is discussed in [7].)

Consider the function /_(U, D), where /0 is the same as the black-box method objective

function F, except that U and D are considered to be independent of each other. The function

L/_'(U, D) is then equivalent to the black-box method objective function F(U(D), D) only whe_
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_(5) is satisfied. The gradients _TDP(X ) and XTu _'(X) are ordinarily "easy" to obtain because]

of the assumed independence.

However, the optimization code requires _7DF, the gradient of the black-box objective

function F with respect to the design variables D. As shown in [4], this gradient is given by

VDF(X) = VDF'(X)- JT JuT VU [-'(X) . (s)

Here, superscript T indicates transpose. The derivation of (8) assumes that we are at a solution

of (5).

The following algorithm could be used for computing VDF using (8):

i. Compute _TuP and _TO/_

ii. Solve JuTA = -_TuP for A

iii. Compute V DF = V oF + jT A.

Note that the minus sign is associated with the second step of the algorithm to facilitate

comparison with the variational approach later. Note also that, if it is difficult to solve linear

systems with the matrix arT, the linear algebra in (8) can be rearranged as (Ju1JD)T_7u_'(X),

requiring nD solves with Ju. Observe that Ju1JD is the matrix of "sensitivities" of the solution

U with respect to the design variables D.

We now apply this algorithm to the model problem and give a complete specification of one

evaluation of a gradient during the optimization.

Implicit gradient algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3).

2. Compute _7u_,g' = U - U and XTDF = 0.

3. Given the Jacobian Ju of the discretized flow equations with respect to the flow variables U,

evaluated at the solution, solve JuTA = -(U - U) for A

4. Given the Jacobian Jo of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient _TDF = jTA

4.2 Variational Approach

In the variational approach, we deal first with the "Continuous Design Problem," and use

calculus to derive an infinite dimensional "gradient." We then discretize the problem. Since it

is somewhat cumbersome to present the methodology for a general case, we specialize to the

model problem immediately.

For technical reasons that will become apparent later, it is desirable to augment the governing

differential equation (1) with an artificial viscosity term eu_, giving

d) = + f¢ + d) = 0. (9)

Here, d(sx) is a function that controls AJA.

Recalling that h(u) = ½(u(_) - fi(_))2, the Lagrangian is

L foI rOd'L = h(u)d( + A(()w(u, d)d(,

1
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f,_.

[md A(_)is an adjoint function that is the continuous analogue of Lagrange multipliers. Applying I

the calculus of variations, and doing the usual integration-by-parts, we find that the variation of

the Lagrangian is

¢5L = [-e(AcSu_- A_u)q- ¢5(Af)]10

jr01 j_01+ (-eA_ - f,,A_ + g,,A + h,_)Sud_ + AWd(6d)d_.

(Note w d = gd.) The second term can be made to vanish by requiring that the adjoint equation

-eA_ - fc, A¢ + guA = -h,, (10)

be satisfied. In (10), fu,9,,, and hu am given functions of _, since they am evaluated at u(_),

the solution of (9). The integrated term []_ vanishes since ¢5u(0) = 6u(1) = 0 and we choose

A(0) = A(1) = 0 as the boundary conditions on the adjoint A. Then, the "gradient" of the

continuous design problem with respect to changes in the controlling function d is expressed by
the variational formula

_f = Awd( 6d)d_. (11 )

We now need to discretize (9), (10), and (11). We assume that (9) is discretized by one of

the methods described in Section 3.2. Thus, the discretization of the analysis problem is assumed

here to be the same as for the implicit gradient approach. (In general, of course, this need not be

so.) While those discretizations (the G-, EO, and AV-schemes) are designed to solve the inviscid

(e = 0) equation, they in fact all incorporate some kind of artificial viscous effects, either by

upwinding (G and EO) or by explicit artificial viscosity (AV). That is why we added the viscous

term in (9): so it would appear in equation (10), and thus guide us to reasonable discretizations

of the adjoint equation.

Let the computational grid be as described in Section 3.2, and Aj be the approximation to A

on the grid. Noting that h,, = u - fi, let us take the discretization of the (10) to be given by

/36= -(U - _;),

where the difference operator/3 remains to be specified. Note that this equation is linear in A

since (10) is linear in A.

Finally, to discretize (11) we could use any reasonable quadrature formula. However, we

choose to use the rectangle rule, which gives for the k-th component of the gradient

J

(VoF)k = Z(W,)D, Ai.

2=1

Here, (Wi)D_ is the derivative of the j-th discrete flow equation with respect to the k-th design
variable. In matrix notation, this is none other than

_ DF = JTA,

SO we have again deliberately chosen the discretization to agree with Step 4 of the implicit

dient algorithm. ]
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F Gathering these pieces together, a complete specification of one evaluation of a gradient in7

an optimization procedure is given below.

Variational algorithm for model problem:

1. Given the current estimate of the design variables Din, solve the discrete analysis problem (3)

2. Compute _7u/_' = U - [)" and _7DF = 0.

3. Solve the discrete adjoint equation BA = -(U - _') for A

4. Given the Jacobian Jo of the discretized flow equations with respect to the design variables

D, evaluated at the solution, compute the gradient _TDF = JTDA

As we have constructed this algorithm, it differs from the implicit gradient algorithm only

in step 3. The two procedures are identical if we choose B = JuT, the transpose of the Jacobian

of the analysis problem, evaluated at a solution of the analysis problem. Looked at another

way, a particular choice of a discretization of the analysis problem, and the associated Jacobian

Ju, suggests a specific choice of the discretization B of the adjoint problem, namely B = jT.

Pursuing this idea, let (Ju)G,(Ju)Eo, and (Ju)AV denote the Jacobians associated with the G,

EO, and AV schemes for the analysis problem, respectively. Then three possible discretizations

of the adjoint are given by B = (Ju)T,B = (Ju)To, and B = (Ju)TAv. We note that two of

these, (Ju) T and (Ju)TEo , do not correspond to obvious discretizations of the adjoint equation

(10). This is largely due to the careful treatment of "sonic points" (points where f_, = 0) and

shocks in the G and EO schemes.

Let us call the discretizations of the forward and adjoint problems incompatible if B -¢ Jff.

This means that the discrete analysis problem and the discrete adjoint problem are not discretely

adjoint. It is precisely the effect of such incompatibility that we want to test. Thus, to carry out

such tests we may solve the forward problem with (say) the G-scheme, but choose the adjoint

discretization to be B = (Ju T)EO" Such comparisons will be pursued in the Numerical Results
section, below. There, we will use the notation [G, (Ju T)EO] to refer to such a combination.

We may also look at (10) directly and ask "what is a good way to discretize this differential

equation?" It turns out that, for our model and test cases, fu changes sign once, and 9,, > 0.

For small e, (10) is thus a singular perturbation, two-point boundary value problem with a

turning-point. A good numerical method for such problems is the E1-Mistakawy-Werle scheme;

a complete specification of this scheme, and an analysis which applies directly to the cases tested

below, is given in [1]. That analysis shows that, for our test cases, the adjoint function A is

"smooth" in the interior of the domain and has boundary layers at both ends. We will refer

to this scheme for solving (10) as the EMW scheme. (In the results presented later, we took

e = 10 -5 and used linear interpolation to move between the "point-centered" grid natural to the

EMW scheme and the "cell-centered" grid used in the analysis solvers.)

4.3 What is the "correct" gradient?

When we use the variational formulation described above, and we choose B to be anything

other than JuT, we will obtain a gradient different from the one obtained by the implicit gradient

approach. This raises the issue of which gradient is "correct." There are two different philosophical

points of view. The first holds that, since we are really computing an approximation to the

continuous design problem, both gradients represent different approximations to the "continuous

gradient," and hence neither is correct. The second holds that, irrespective of the continuous

problem, our goal in computation is to solve the discrete design problem. We are more inclined
o adopt the second point of view. Thus, we feel that (modulo finite precision arithmetic) the]
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_mplicit gradient is the correct one, and that the variational formulation only yields the correct[

gradient when the particular discretization of the adjoint represented by B = jT is chosen.

5. NUMERICAL RESULTS

In this section we present numerical results obtained by solving the discrete design problem

for duct flow described in Section 3, utilizing gradients computed by the implicit gradient and

variational methods of Section 4. As constructed in Section 4, these methods differ only in step

three of the algorithms, and they are identical if in step three of the variational algorithm we

choose B = JuT, the transpose of the Jacobian of the discrete analysis problem with respect to the

flow variables. The specific algorithm used below is thus specified by the choice of B. We will

first outline the optimization methods and test cases used. Then we will report on some tests using

controlled amounts of gradient error, and compare the implicit gradient and variational methods.

5.1 Optimization Methods

The basic optimization code used was NPSOL version 2.0, a product of the Systems

Optimization Laboratory, Stanford University. NPSOL is an implementation of the Sequential

Quadratic Programming (SQP) method. NPSOL 2.0 computes a secant approximation to the

Hessian (2rid derivative) matrix and the user supplies first derivatives. Results obtained with an

optimization method similar to steepest descent are not reported here, but may be found in [8].

5.2 Test Cases

For our tests, the design variables (called D in Section 4) were the B-spline coefficients

describing the duct geometry A(_). The two end values of A were fixed at A(0) = 1.050 and

A(1) = 1.745. Velocities along the duct were the flow variables (called U in Section 4) for the

duct design problem. We took J = 40 grid cells, so there were nu = 40 flow variables; this

gives resolution about equal to what might be expected in practical computations. The boundary

conditions were U0 = 1.299 and/.741 = 0.506. In the optimization runs Newton's method was

used to solve the analysis problem (3), and the analyses were "warm started." That is, the initial

guesses for the flow velocities were taken to be the solutions from the preceding analysis. The

initial velocity profile for the first analysis in an optimization run was a linear profile connecting

the boundary conditions. The goal velocities Q/ were the evaluations on the computational grid

of the analytic solution for a goal duct shape with a cross-sectional area given by a sinusoidal

perturbation of the linear duct. These area and velocity profiles are the curves marked (X) in

Figure 1. No constraints were imposed in these tests. Without constraining the geometry, it is

possible for the optimizer to generate designs that cannot be analyzed (the analysis problem has
no solution). In this case, we assign a large function value and return to the optimizer. The

optimizations were allowed a maximum of 70 major iterations, which is considerably more than

would be tolerable in practical use. (This corresponds, very roughly, to a maximum amount of

work equivalent to 1000 linear system solutions with the Jacobian of the analysis problem.)

The majority of the tests were conducted with rt D = 2 design variables. For these tests, three

initial guesses for the design variables were selected. These three guesses yield solutions of the

analysis problem shown in Figure 1. A contour plot showing the dependence of the objective

function on the design variables is displayed in Figure 2. (This plot is for the AV-scheme; the

Plots for the other schemes are similar.) Also shown are the locations of the optimum and of

he three initial guesses of D. The contour plot shows a narrow valley with steep sides and aJ



75
Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-III). Editor: G.$, Dulikravich, W_shington D.C,, October 23-2_, 1991,

f.=.

]relatively flat bottom. Descending the steep sides corresponds (roughly) to getting the shock in]

the correct location; this has the largest impact on reducing the objective function and is relatively

easy for the optimizer. Moving along the valley bottom corresponds to getting the other details

of the velocity profile right. This is much harder to do. Thus guess 1 corresponds to a relatively

difficult problem, while guesses 2 and 3 correspond to problems that are somewhat easier.

5.3 Controlled gradient error tests.

Since we cannot directly control the gradient errors that are obtained when using incompatible

discretizations of the forward and adjoint problems, we first conducted some controlled gradient

error tests. In these tests we first obtained the correct gradient using the implicit gradient method,

and then added controlled amounts of random error to the gradient. The quantitative results

are given in [8]. We were surprised to find that the optimizations began to fail at fairly small

amounts (a few percent) of gradient error.

The trust region methods for step size determination in optimization used in [3] apparently

worked with a much higher level of relative error in the gradients. However, we found that trust

region methods were not much better then line search methods (like in NPSOL) when applied to

our model, which is apparently a "harder" problem than many standard optimization test cases.

5.4 Tests comparing the implicit gradient and variational approaches

We now proceed to compare results obtained with the implicit gradient and variational

approaches.

The optimizations were run with the twelve combinations of analysis and adjoint solvers

shown in Table 1. The discretizations of the analysis problem indicated by G, EO, and AV

correspond to the Godunov, Engquist-Osher, and Artificial Viscosity schemes (described in Section

3.2), respectively. The discretizations of the adjoint problem are as described at the end of

Section 4.2. Here, the notation B = (du) T means, for example, that the discretization of the

adjoint differential equation in step 3 of the Variational Algorithm is given by the transpose

of the Jacobian of the analysis problem when the Godunov scheme is used. The particular

combinations [G,(Ju)T], [EO,(Ju)TEoI, and [AV,(Ju)Tv] mean that the forward and adjoint

solvers are discretely adjoint, and thus that the implicit gradient method is being used. In all

other cases, the analysis and adjoint solvers are incompatible (not discretely adjoint).

The qualitative results of Table 1 show that the only reliable combinations of forward and

adjoint solvers are those corresponding to the implicit gradient method. There does not seem to

be any other discernible pattern in the results. An examination of more quantitative data, like

final value of the objective function and specific amounts of work used, also yield little additional

useful information. An examination of the gradients obtained by the variational method (not

discretely adjoint) shows that the relative error compared to the correct (implicit) gradient is often

more than a few percent, and that the gradients are in error both in direction and magnitude [8].

We carried out many of the same tests with an optimizer more like steepest descent, and also

with the objective function "smoothed" by a method suggested by Jameson [5]. Such smoothing

should reduce the impact of getting the shock location correct on the objective function. (It

broadens the valley of Figure 2.) The necessary modifications to the variational approach are

described in [8]. Again, we were unable to discern any pattern in the results: sometimes the

Lmodifications helped, sometimes they hurt. ]
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/ Additional test were carried out with nD = 10 design variables, and the same conclusion wasl

reached: the only reliable combinations of forward and adjoint solvers correspond to the implicit

gradient method. That is, the forward and adjoint solvers should be discretely adjoint.

6. CONCLUSIONS

We have shown that two seemingly quite dissimilar approaches to design optimization can,

under certain circumstances, be very closely related or even identical. The two approaches, the

implicit gradient method and the variational method, both result in gradient calculations that are

significantly cheaper than generating gradients by finite differences. The methods differ from

each other (essentially) in that the order of discretizing the continuous problem, and of applying

calculus, is interchanged. In the implicit gradient approach, the continuous problem is discretized

first, and a formula for gradients needed in the optimization is derived by applying the implicit

function theorem. In the variational method, calculus is applied first, and one then needs to solve

two differential equation problems: the analysis (or forward) problem, and the adjoint problem. If

the analysis problem is discretized the same way as for the implicit gradient approach, and if the

adjoint is discretized by a method that corresponds to the transpose of the Jacobian of the forward
discretization, then the methods are (modulo some details) the same. If the adjoint discretization

is taken to be anything else, then the two methods generate different gradients and the variational

method gradients are "in error." In our tests using a model for transonic duct flow, the gradient

errors were generally small, but were nevertheless sufficient to cause the optimizations to slow

down significantly or to fail altogether. For our model problem and optimization method, the

only reliable combination of forward and adjoint discretizations is the one corresponding to the

implicit gradient method.
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Figure 1: Area function A and corresponding velocity function U for Guesses 1, 2, 3, and optimal solution (X).
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_opigUre2: Contour plot of the objective function (for the AV-scheme) showing locations of Guesses 1, 2, 3, and the

timum. The two axes represent the two design variables (B-spline coefficients) describing the area function A J
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Results obtained using NPSOL as the optimizer, for various combinations of forward and adjomt solvers. InTable 1:

each cell, the three entries correspond to initial guesses 1, 2, and 3 for the design variables. The designation (+) means

that the optimization converged to the correct solution. The designation (o) means that the optimization got "close,"
but did not converge. The designation (-) means that the optimization did not succeed in getting close to the solution.
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ABSTRACT

Thrust vectoring is continuing to become an important issue in future military aircraft

system designs. A recently developed concept of vectoring aircraft thrust makes use of flexible

exhaust nozzles. Subtle modifications in the nozzle wall contours produce a non-uniform flow

field containing a complex pattern of shock and expansion waves. The end result, due to the

asymmetric velocity and pressure distributions, is vectored thrust. Specification of the nozzle

contours required for a desired thrust vector angle (an inverse design problem) has been achieved

with genetic algorithms. However, this approach is computationally intensive preventing nozzles

from being designed in real-time which is necessary for an operational aircraft system. An

investigation was conducted into using genetic algorithms to train a neural network in an attempt

to obtain, in real-time, two-dimensional nozzle contours. Results show that genetic algorithm

trained neural networks provide a viable, real-time alternative for designing thrust vectoring

nozzles contours. Thrust vector angles up to 20 ° were obtained within an average error of

0.0914 ° . The error surfaces encountered were highly degenerate and thus the robustness of

genetic algorithms was well suited for minimizing global errors.

INTRODUCTION

Future military aircraft will rely heavily on two- and three-dimensional thrust vectoring

engines to boost their maneuverability and provide enhanced performance spanning their large

operating envelopes. Current new technology engines use post-exit vanes or large moveable

surfaces to redirect engine exhaust to yield the desired thrust vectoring. Although this method

has proven to be effective, penalties must be paid. For example, most thrust vectoring devices

are heavy, primarily due to structural requirements involving the impinging exhaust flow. The

devices must also be designed to withstand the extreme temperatures of the engine exhaust gases

impinging on them. Control of the vectoring apparatus is complex and adds even more weight to

the aircraft. Furthermore, the installation of typical thrust vectoring devices tend to mandate

large clearance gaps to allow surface movement and there is little opportunity for aerodynamic

fairing. These and other factors can combine to yield higher overall drag forces on the aircraft.

A novel concept of vectoring engine thrust which addresses these concerns has been

developed and shown to be viable [I]. The concept makes use of flexible nozzles where engine

exhaust gases are turned not by some post-exit apparatus, but by suhtle changes in the contour of

the nozzle walls. The contour modifications produce a complex shock and expansion wave

pattern in the nozzle flow field and the end result is vectored engine thrust. Through judicious

tailoring of the nozzle contour, a large range of thrust vector angles may be achieved.

Theoretical pitch vectoring of +20 ° has already been demonstrated with this concept. Full three-

dimensional vectoring (pitch, yaw, and roll) is currently being investigated and could possibly

eliminate the need for any tail control surfaces on future aircraft. This would result in a

tremendous savings in weight and drag as well as a significant reduction in radar cross-section.
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This novel approach to thrust vectoring is based entirely on modifying the contour of the

exhaust nozzle. In order for the technique to be useful in an operational aircraft system, the

nozzle contour must be alterable in real-time. Structural concerns aside, the challenge is to

specify, on demand, a nozzle contour for a pilot-requested thrust vector angle. This suggests that
modification of the nozzle contour would be tied to the flight control system of the aircraft.

What is necessary for the success of such a thrust vectoring system is the real-time solution of an

inverse design problem. Simply stated, for a requested thrust vector angle, what would be the

required nozzle contour?

Existing Jacobian-based methods for solving an inverse problem of this type are fraught

with numerical difficulties and usually require an intense computational effort. A non-Jacobian

based method like genetic algorithms can be used to compute the required nozzle contour for a

requested thrust vector angle as was proven in a recent study by King, et al. [2]. However, the

specification of the nozzle contours still could not be accomplished in real-time using genetic

algorithms due to the computational requirements. Genetic algorithms, although they can

routinely solve the inverse nozzle design problem (a definite advantage over many Jacobian based

methods), still require numerous flow field evaluations to do so.

The hypothesis of the work presented here was that the inverse design problem could be

solved in real-time if a non-Jacobian based method (genetic algorithms) was coupled with a

neural network. Neural networks are biologically inspired computing systems with the

phenomenal ability to grasp topological invariances that underlie inverse transformations. Thus, a

neural network has the potential to be trained by a genetic algorithm and then, after sufficient

training, would be able to solve the inverse nozzle design problem in real-time. It is important to

note that there is no intention to dismiss Jacobian methods; in fact the coupling of a Jacobian

method with a neural network to design nozzles is currently under investigation by the authors.

In this paper, however, it is demonstrated that by using genetic algorithms, neural networks can

be designed to provide an alternative with remarkable dexterity and computational ease for the

real-time specification of thrust vectoring exhaust nozzles.

GENETIC ALGORITHM OVERVIEW

Genetic algorithms are increasing in popularity as a search and optimization technique but

are still unknown to a large portion of the scientific community. Thus a brief description is in

order. Genetic algorithms (GAs) are search algorithms based on the mechanics of genetics; they

use operations found in natural genetics to guide their trek through a search space. Their main

strength lies in their ability to perform efficiently across a broad spectrum of search problems

including problems that are large, noisy, and poorly behaved. Two empirical investigations in the

early 1970's demonstrated the technique's efficiency in function optimization [3, 4]. Subsequent

application of GA's to the search problems of pipeline engineering, VLSI (very large scale

integration) microchip layout, structural optimization, job-shop scheduling, medical image

processing, propulsion system component design, and machine learning adds considerable evidence

to the claim that GAs are broadly based and robust.

GAs consider many points in a search space simultaneously and therefore have a reduced

chance of converging to a local optimum. In most conventional search techniques a single point

is considered based on some decision rule. These methods can be dangerous in multi-modal

(many peaked) search spaces because they can converge to local optima. However, GAs generate

entire populations of points, test each point independently, and then combine qualities from

existing points to form a new population containing improved points. Aside from conducting a

more global search, the GA's simultaneous consideration of many points makes it highly adaptable

to parallel processors since the evaluation of each point is an independent process.

GAs require the natural parameter set of the problem to be coded as a finite length string

of characters. This is actually true of all operations performed on a computer at the machine



level, however the GA requires this coding on the local level. The user must represent possible

solutions to the search problem as character strings. This may at first seem like an imposing task

but there have been a number of techniques developed for coding solutions to search problems

[5]. Since GAs work directly with a coding of the parameter set and not the parameters

themselves, they are difficult to fool because they are not dependent upon continuity of the

parameter space. A GA only requires information concerning the quality of the solution

produced by each parameter set (objective function values). This differs from many optimization

methods which require derivative information or, worse yet, complete knowledge of the problem

structure and parameters. Since GAs do not require such problem-specific information they are
more flexible than most search methods.

Lastly, GAs differ from a number of search techniques in that they use random choice to

guide their search. Although chance is used to define their decision rules, GAs are by no means

"random walks" through the search space. They use random choice efficiently in their

exploitation of prior knowledge to rapidly locate optimal solutions.

NEUROMORPHIC APPROACHES TO INVERSE PROBLEMS

Before presenting the results of the neural network designed thrust vectoring nozzles, it is

necessary to discuss the justification for solving an inverse problem using a non-Jacobian, genetic

algorithm trained neural network approach. Of fundamental importance in solving inverse

problems is the classic Stone-Weierstrass theorem [6, 7]. Using the Stone-Weierstrass theorem it

can be shown that under certain conditions non-linear operators, such as the one encountered in

fluid flow problems, can be represented using the well known Volterra and Wiener series thereby

allowing computation of an approximate solution to the inverse problem. The impressive

theoretical works of Volterra, Wiener and Urysohn (see Ref. [6]) on the characterization and

approximation of non-linear operators find their full expression in neuromorphic approaches to
inverse problem solving.

Let f and 8 be Lebesgue integrable functions representing the spatio-temporal evolution of

nozzle geometry and temporal evolution of thrust vector angle, respectively. The complex cause-

effect structure that relates nozzle geometry and thrust vector angle can be written as

0 = T(f) (1)

where T : E =-) F is a mapping between appropriately defined Banach spaces E and F. The
inverse problem is to determine the map T -I : F =- E such that

f = T-I(O) (2)

Except in certain cases of little practical interest, the precise nature of the operator T is
usually not known. Thus, to solve the inverse problem, we must first characterize the class of

Banach space operators to which T belongs. But, even when T is known to belong to a certain

class, T -1 may not exist as a unique map resulting in an infinity of solutions to the inverse

problem. Therefore, we must approximate T -1 using fairly nice operators that lie close to T in

some sense. Commonly used notions of closeness usually involve LP-norms defined on the
terminal space F:

L"Nor,,,: I1011:=j'flOl'd'

(3)

L-No,,,,: Ilell_=e.,. ,uplOl
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Several researchers have shown that infinite neural networks with a single hidden layer can

approximate any Lebesgue measurable function [8, 9]. It has also been shown that L 2 (mean-

square integrable) functions can be approximated by a three layer neural network [10]. These and

other powerful results form the basis for applying neural networks to inverse problems. The

canonical procedure for constructing a neuromorphic approximation to the inverse transformation

is to capture topological invariances in the synaptic interconnections and weight structure using a

priori generated training samples. Upon acquiring the invariances, a neural network can rapidly

output a unique solution to any problem instance spanned by the training set.

To illustrate the advantages of a non-Jacobian method, consider a Jacobian based solution

technique to a simple problem involving no unsteady effects. The goal is to find a static nozzle
geometry f so as to minimize

J = (/9- O °)2 (4)

subject to

Tf = 0 (5)

where J represents the difference between the calculated and desired thrust vector angles. Under

certain assumptions on T, variational calculus provides the necessary conditions for computing an

optimal nozzle contour. In general, a numerical solution can then be found iteratively from

fnew = fold + K VJ (6)

where K is a gain and VJ is the gradient of J evaluated at fold. However, the disadvantages of
this are:

Every time a thrust vector angle is demanded, the flow equations must be solved at every

iteration until convergence in order to evaluate the gradient. This requires exceptional

computing power for real-time applications.

2. The cost surface is highly degenerate and has a multitude of troughs. There is no guarantee

that the iteration will converge to an acceptable solution.

, Perhaps the most important limitation is that the optimal solution depends on the particular

assumptions made regarding nozzle flow. The operator T that describes nozzle flow must be

known explicitly for numerical implementation. Thus, experimental nozzle data cannot be
used.

Consequently, the use of genetic algorithms for neural network design is justifiable. (As alluded

to previously, a parallel research effort is currently underway at the University of Alabama to

design a network using a Jacobian based back-propagation method and will be the subject of a
future paper.)

NEURAL NETWORK DESIGN

Designing a feed forward neural network for real-time thrust vectoring involves two phases:

a supervised training phase and a verification phase. Supervised training entails embedding the

topological invariances in the synaptic weight space through repeated presentations of training

samples that characterize the relationship between nozzle contour and thrust vector angle.

Although a single network with a large number of synaptic interconnections can be designed to



span the wide range of in-flight thrust vector angle requirements (±20°), it is not ideally suited
for real-time applications. Instead, designing several small neural networks with fewer real-time
computations, each for a specified overlapping range of thrust vector angle, is more appropriate.
Outputs from two neural networks that span the overlap containing the demanded thrust vector
angle could be linearly interpolated to provide nozzle shapes. In addition to maintaining design
simplicity, this approach has the significant advantage that the two neural networks can be run
parallely, thereby reducing real-time computational requirements.

The feed forward neural network topology used in this study consists of a sigmoidal
activation function, a single-node input layer, a four-node output layer, and two hidden layers
each with four nodes. A schematic representation can be seen in Figure 1. Input to the neural

network is the desired thrust vector angle 0; outputs from the network are polynomial coefficients
{ai, i = 1, 4} that define the contour of the nozzle's upper wall as

4

f( x) = Z ai( x -- x0)i(x -- xf) i 4- g( x)

i=l

(7)

where x o and x t are x-coordinates of the fixed ends of the baseline geometry g(x). Only the
upper nozzle wall was selected for modification to simplify this initial analysis. Thus, the neural

network outputs define an incremental geometry referenced about the baseline.

The baseline nozzle developed for use in this study is shown in Figure 2. The nozzle type
selected was a symmetric, dual expansion ramp nozzle with contourable walls. Concerns factored

into the design were minimum length (to minimize weight) and reduced line of sight onto the
engine hot-section to address observable characteristics. The baseline geometry was obtained

after a number of iterations to insure the best performing nozzle was being used as a reference.

The thrust vector angle of the baseline is zero degrees with a gross thrust coefficient of 0.983. In

this study, a positive thrust vector angle corresponds to a vehicle nose-up pitching moment. It
was assumed that the on-design conditions for the nozzle would be a nozzle pressure ratio of 10,

a flight Mach number of 15, and a fluid specific heat ratio of 1.15. Being essentially a proof-of-
concept, this study was also restricted to a two-dimensional (planar) nozzle to further simplify the

analysis. However, except for an increase in the computational time required, no other technical
challenges would be expected in the step from two to three dimensions.

Thrust vector angles corresponding to a large number of randomly generated, polynomial

nozzle contours were computed using an analysis code based on the inverse method of

characteristics [1 !]. This code, developed at the University of Alabama, allows for the analysis of
supersonic flow fields internal to a nozzle as well as the supersonic exhaust plume. The code has

been extensively validated with experimental data from NASA and industry. The network design

procedure, however, does not depend on how the training samples are obtained and any method -

numerical or experimental - can be used. Eight neural networks of identical topology were

designed to span thrust vector angles between 5* and 20*. For each neural network design, 500
training samples that spanned the corresponding thrust vector angle range were presented to the

network. Synaptic weights that minimized the ensemble error between neural network output {a i,

i = I, 4} and actual polynomial coefficients {ci, i = I, 4} in the L 2 space were determined using a
genetic algorithm. The set of weights displaying the minimum performance index over 25

generations was considered the optimal set of weights.

It must be noted that in an operational version of the neural network, inputs would be a
function of time; whereas during the training phase, constant values of thrust vector angles

constituted the training samples. This brings about a significant advantage of transforming what,

in general, would be a dynamic optimization problem to a static network design problem.

However, it is valid only upon neglecting unsteady fluid flow effects caused by dynamic changes
in nozzle contour which is completely acceptable for aircraft thrust vectoring systems.



NEURAL NETWORK VERIFICATION

A Monte Carlo simulation was performed to verify the neural network design. 500 thrust

vector angles between 5 ° and 20 ° were randomly generated. Each thrust vector angle was then

presented to the neural network as an input. Polynomial coefficients obtained as outputs from

the neural network were used to define a nozzle contour. Representative samples of nozzle

contours obtained from the neural network can be seen in Figure 3. The MOC code was then

run to find the actual thrust vector angle for each of the neural network specified contours.

Figure 4 compares the requested thrust vector angle with the angle obtained from the MOC code.

Figure 5 shows the error in the network achieved thrust vector angle. The performance of each

of the eight networks used also can be clearly seen in Figure 5. Thrust vector angles of up to

20 ° were obtained within an average error of 0.0914 ° by affecting modifications to the upper

nozzle wall only. Modifying both upper and lower walls would cause a very complex flow

structure and could possibly expand the vectoring angle envelope. The maximum error in the

thrust vector angle was 0.3791 ° which would be negligible in an operational aircraft system.

Further improvements in vectoring performance can be expected to occur by using an L _ type

performance index and running the genetic algorithms in the training phase with an increased

number of generations.

CONCLUSIONS

It has been have shown that neural networks provide a viable alternative to straight

Jacobian based solution methods. They have significantly reduced real-time computations while

maintaining accuracy and retaining design simplicity. In addition, although genetic algorithms

may not be ideal for solving the inverse problem of thrust vectoring directly, their utility is

demonstrated by their ability to train a neural network to do so.

The procedure presented here for designing neural networks and the subsequent design of

thrust vectoring nozzles has advantages and disadvantages. Error surfaces encountered while

designing thrust vectoring nozzles are highly degenerate and therefore a robust optimization

scheme such as a genetic algorithm is required for global error minimization. But in problems of

high dimensionality, there are numerical difficulties in using genetic algorithms, limiting the

complexity of the simulated function and the size of the network that can be trained. Jacobian

based back-propagation, for example, may reduce the training period significantly and would

have no difficulty handling large dimensions. However, as with other gradient techniques, back-

propagation is prone to converge to a local minimum, thereby converging to an incorrect network

design or not converging at all. Further study is recommended to put these concerns to rest.

Finally, there are two competing aspects to neural network design accuracy and

generalizability - which need to be addressed. Accuracy has to do with how close is the

approximation obtained using the neural network. Generalizability means that a neural network

can interpolate and extrapolate beyond problem instances spanned by the training set. The

performance indices used in this study do not reflect generalizability. It would be of
considerable interest to develop performance indices that provide a balance between the two

aspects and then redesign adaptive neural networks for thrust vectoring. In this study an off-line

design method, wherein the entire training set is presented to the neural network at one time, was

used; an on-line or adaptive neural network capable of learning while in operation would be

better suited for practical applications.
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ABSTRACT • / ...... J

In structural redesign, two structural states are involved; the baseline (known) State S 1 with

unacceptable performance, and the objective (unknown) State $2 with given performance
specifications. The difference between the two states in performance and design variables may be
as high as 100% or more depending on the scale of the structure. A Perturbation Approach to
Redesign (PAR) is presented to relate any two structural states S1 and $2 that are modeled by the
same finite element model and represented by different values of the design variables. General
perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes,
static deflections, static stresses, Euler buckling loads and buckling modes of the objective State
$2 in terms of its performance specifications, and State S1 data and FEA results. LargE
--Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to defme the
objective State $2 incrementally without trial and error by postprocessing FEA results of State S1
with no additional FEAs. Systematic numerical applications in redesign of a 10-element 48-d.o.f.
beam, a 104-element 192-d.o.f. offshore tower, a 64-element, 216-d.o.f. plate, and a 144 element
896-d.o.f. cylindrical shell show the accuracy, effic"ency, and potential of PAR to find an
objective state that may differ 100% or more from the baseline design.

I. INTRODUCTION

Several problems in analysis, design, and modification of a structure or a structural design
can be stated as redesign problems. Those are two-state problems involving the baseline State S 1
and the objective State $2. S1 is known and has been modeled and analyzed by FEM. In the
event that the performance of State S 1 is unadceptable, the objective State $2 must be defined to
satisfy performance specifications. The Perturbation Approach to Redesign (PAR) developed in
this work can relate any two structural states that can be modeled and analyzed by the same FE
model. PAR has the potential to perform redesign in the sense of resizing, reshaping, and
reconfiguration to satisfy any performance requirements that can be predicted by FEA including
modal dynamics, static deflections and stresses, and global buckling. LEAP algorithms
implemented in code RESTRUCT (REdesign of STRUCTures) [3] presently can handle resizing
for natural frequencies, mode shapes and static deflections.

Figure 1 shows several two-state problems that appear in the analysis-design-redesign
process following a basic FE analysis. In analysis, the following two-state problems are
encountered: (P1) Model correlation [28], (P2) Derivation of global failure equations [1, 14], (P3)
Failure point identification [14], (P4) Redundancy [14], (P5) Reliability, [4], (P6) Non-
Destructive-Testing [24]. In design, the following two-state problems are encountered: (P7)

Redesign for target performance [1, 2, 11, 12, 24, 26, 27], (P8) Redesign for target redundancy,
(P9) Redesign for target reliability.

LEAP theory was developed during the past seven years from the linear perturbation

techniques introduced by Stetson in 1975 [26, 27] and modified by Sandstrom et al [24]. They
redesigned a structure for both natural frequency and mode shape objectives but allowed only
small differences between the baseline and objective states. In that respect, linear perturbation

L methods are equivalent to design sensitivity methods. Nonlinear perturbation methods [11, 12]

allow for large differences between the two states. The objective state is found by postprocessing J
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dataof the baselinestructureonly, using an incrementalprediction correction scheme[1]. I
Presently, research efforts are directed towards two goals. The first one is to redesign larger scale
structures as far away from the baseline structure as possible before a second FEA is needed.
Large admissible perturbations [1] updating only cognate modes [2] in an incremental process are
used towards that end. Substructuring is also investigated for that purpose, as well as for

reshaping and reconfiguration. The second goal is to implement more and different objectives and
derive the corresponding general perturbation equations. LEAP algorithms are under development
for static stress, global buckling load, and buckling mode objectives.

The problem of redesign by large admissible perturbations is analyzed in Chapter I/. Several
two-state problems mentioned above are stated as redesign problems in Section II.1. The
Perturbation Approach to Redesign (PAR) is presented in Section II.2 and LEAP theory for
development of solution algorithms is summarized in Section 11.3. Many numerical applications
using four different structures are presented in Chapter III to assess the present status of code
RESTRUCT, and the potential and limitations of PAR.

II. REDESIGN BY LARGE ADMISSIBLE PERTURBATIONS

A simple modeling-analysis-design-redesign process for structures using FEM is shown in
Figure 1. Rectangular blocks indicate two-state problems which can be formulated as redesign
problems using PAR and solved efficiently by a LEAP algorithm. Shaded blocks indicate
problems already solved in some form by code RESTRUCT. Some of those problems are
discussed below.

II.1. Redesign and Other Two-State Problems

The classical structural redesign problem appears in Figure 1 after analyzing either the original
or the correlated FE model. Undesirable response - such as a natural frequency in the range of
wave excitation, a dynamic mode with high amplitudes near the free surface where wave and
current loads are maximum, or high stresses and deflections - makes redesign mandatory. The

performance specifications of the objective design are desirable values of those response
particulars.

After placing a structure in service, tests are performed to measure its performance and
compare it to FEM predictions. In the modeling process, simplifying assumptions, uncertainty,
and ignorance result in discrepancies between measurements and predictions particularly for
marine structures which have large manufacturing tolerances. The process of finding a FE model
of a physical structure that will correctly predict measured structural response is called model
correlation. The initial FE model is the known State $1. The objective State $2 represents the

unknown correlated FE model. The Perturbation Approach to Redesign presented in the following

section preserves element connectivity and changes geometric properties so that the correlated
model represents a real structure [2]. That is, PAR does not change simply numbers in the mass
and stiffness matrices. PAR can also solve the problem of model correlation for geometry

dependent hydrodynamic load [28].
The problem of failure point identification can also be formulated by PAR and solved by a

LEAP algorithm. S1 represents the initial structural state and $2 the unknown failure point
(design point in reliability terminology) on a limit surface [10, 20]. The advantage of PAR is that
it can provide an implicit expression for a global failure criterion by relating State $2 to S 1.

Related is the problem of reserve and residual redundancy. In the literature, several different
aspects of redundancy are presented as definitions depending on the type of structure and analysis
performed [5, 6, 21]. PAR remedies this lack of invariant and consistent redundancy definition by
introducing a redundancy injective mapping [ 14] defining the difference between the initial intact
or damaged structure and the design point.

Finally, a new methodology for reliability analysis and design of large scale structures is
under development based on PAR [4]. The Perturbation Approach to Reliability provides an
alternative to the systems approach [5, 21, 29] and the stochastic FEM [19, 30] which are the two

most popular methods in structural reliability. PAR makes possible the introduction of advanced

L structural analysis in the reliability computations without simplifying the structure. PAR alsoj
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allows randomness in geometry, material, and load. There is no limitation to the number of|

""1

random variables used and the random load need not be applied incrementally until structural
failure. The reliability analysis problem is a two-state problem where S 1 is the initial structure and
$2 the design point.

PAR can also address the very difficult problems of target redundancy and target reliability
design. S 1 is the initial structural design of inadequate redundancy or reliability and $2 is the
objective structure of specified redundancy or reliability [4]. These are difficult design problems
because redundancy and reliability are not computed by FEM. PAR can solve these problems
because of the introduction of an injective mapping relating S 1 to $2.

II.2. Perturbation Approach to Redesign (PAR)

The PAR methodology has been developed to solve the above two-state problems. It has five
major steps: Ste_.__A.: A Structure ($1) is modeled and analyzed by a general purpose FE code;
MSC/NASTRAN is used in our work. So far, four types of analysis have been considered in
PAR and the governing equations are listed below. For modal dynamics the free vibration
equations for S 1 are

for j=l,2 ..... n , (1)

where the n eigenvalues 0)j ,j=l,2 ..... n satisfy equation det([k]-0)2[m])=0 In equation

(1), damping may be included only in Rayleigh's form and added mass is included in [m] . For
the static deflections and stresses of S 1 we have

[k] {u}={f} (2)

and {_} = [S] [k] -1 {f} , (3) [S] = [G] [D] [N] , (4)

where [G], [D], [N] are the stress-strain, strain-displacement, and shape function matrices. The
governing equation for global buckling in finite elements is

([ko]+[k_]){Igb}={0} , (5)

[1%] and [k a] are the small displacement and initial geometric stiffness matrices.
The following perturbation relations are introduced relating State $2 to S 1:

[k']=[kl+[Ak] , (6) [m']=[m]+[Am] , (7)

[--0),2..,] = [--0)2..] + ['---A(0)2)...] , (8) [¢_'] = (¢_] + [A0] , (9)

where unprimed and primed symbols refer to the baseline (S1) and the objective State $2,

respectively, and prefix A indicates difference between counterpart quantities of states S 1 and $2.

[_] = [{Ig}l , {lit}2 ..... {Ig}n ], is the matrix of eigenvectors of S1 and _0)2] is the diagonal

matrix of the corresponding eigenvalues. Perturbation relations pertaining to equations (2) and (3)
are

{u'} = {u} + {Au} , (10) {f'} = {f} + {Af} , (11)

{a'} = {a} + {A_} , (12) [S'] = [S] + [AS] (13)

L

For the global buckling eigenvalue problem we have

[ko] = [ko]+ [Ako] , (14) (15)
J
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F [Pcr]=[Pcr ]+[APcr ] , (16) [¢_]=[0bl+[A_bb] (17)

Further, in Step 2, desirable values of some response particulars of $2 such as natural
frequencies, static deflections and mode shapes are specified. An incomplete set of mode shapes
may be used and only some degrees of freedom may be defined in each mode.
Ste_.__33: The differences in structural properties between S 1 and $2 are expressed in terms of the

fractional changes (Xe,e=l,2 ..... p of p properties of elements or groups of elements as:

P P P P

£[Ake]:£[ko] e , (18) [Am]= 2[Amy]= _[me]a e , (19)

e=l e=l e=l e=l
P P

[As1=Z[ASe1=Z[Se> • (20)

e=l e=l

Severn aeS may refer to the same element but different properties such as bending, torsion, and
stretching. The unknowns in the process of defining $2 from its specifications and S 1 are the

fractional changes a e . When the CCeS are defined it is ensured that element connectivity in the

FE model is preserved and $2 represents a real structure.
Ste_!gp_: The differences in structural response between states S1 and $2 are expressed implicitly in

terms of the %s by the general perturbation equations. For modal dynamics we have

P T
Z ({_'}i [ke ]{_'}i - m{2 {_'}? [me]{_'}i ) °_e = mi2 {_'}T[m]{_'}i -{_'}iT [k]{_'}i
e=l

p

£{_'}T[ke]{_lf}i°te =-{v'}T[k]{_'}i ,
e=l

P

£{V'}:[mel{V'}i°te =-{V'}:[ml{v'}i ,

, (21)

(22)

(23)

• e-1 .....
for 1 =],2 ..... n, j = 1+1, 1+2 ..... n [1, 2] . Equauon (21) represents the n diagonal terms of

the energy balance equation ['K'..] - ["M'..]l"o_'z.. I= 0 for $2, that is, the Rayleigh quotients for

fo_2 . Equations (22) and (23) represent---L -,,theorthogonality conditions of modes {_'}i with

respect to [k'] and [m']. Theoretically, orthogonality of modes with respect to one of [k'] or

[m'] implies orthogonality with respect to the other. Numerically, however, both conditions must

be forced if {_'}j, j=l,2 ..... n, are to represent modes of a real structure.
The general perturbation equations for static deflections are derived from the counterpart of

equation (2) for structure $2 based on the modal dynamic expansion of {u'} in terms of the

p

unknown modes {g }j,J- 1,2 ..... n . Thus, inversion of matrix [k'] is avoided• Linearizing

only the explicit dependence on the ores, we have [1, 15]

ui _ ].'e im __m , where (24)
m=l _, Bm e=lkm=l m

n

Am = X(_)'Jm fi)' Bm = {v'}Tmtk]{V'}m ' Cme = {V'}Tm[ke]{V'} "
j=l

The general perturbation equations for static stresses are derived in a similar manner [14]

P ¢_mAm z_| _ _2 "-'m, UeL{ao;=-{o;+ts]+ [Se]ae)Lm=l Bm e=l\m=l"-"m

(25)

J
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FFor global buckling, the general perturbation equations are derived using the same method as in 1
the case of the modal dynamics eigenvalue problem [ 14]

e=l
P

=-(g/b}j [kc]{Vb}i , (27)
e=l

P

"---"- JJt J'--''_--'(ll'/b'_T[k_0e]l'_/blti O_e , T ,--{vu}j[ko0]{vu} ,
e=l

for i = 1,2 ..... n, j=i + 1,i + 2 ..... n, where [kc] = [ko] - [k_F ] , kaF includes the body force,

and [kc] =- Pi[kao] - [kcF].
_¢,,9-._: In this final step, the problem of finding State $2 based on its specifications and results of

FEA for S 1 is formulated and solved for the p unknown CCeS using the LEAP algorithm
presented in the next section. The problem formulation is as follows:

Minimize I1_112_ 9_p , (29)

subject to nco natural frequency objectives co_2 , i = 1,2 ..... no0 ; n, normal mode objectives

(_ki , number of (k, i) = n, ; n u static deflection objectives u_ , i= 1,2 ..... n u ; n(_ static stress

objectives (_ , i=1,2 ..... nor ; n b global buckling eigenvalues Pi' , i=1,2 ..... n b ; neb buckling

mode objectives _)gu , number of (k,i) = neb ; 2p lower and upper bounds on the redesign

variables ate -1 < 0% < c% < +, _c%,e=l,2 ..... p, n a admissibility constraints extracted from

Ilca

equations (22)and (23), where na=ZZ(nr-i)=nc0[(Znr-1)-nc0 ] ; and nab
i=l

admissibility constraints extracted from equations (27) and (28), where

n b

nab = 2Z(n r -i)= nb[(2n r - 1)- nb]. All of the above redesign objectives are substituted in
i=l

the appropriate general perturbation equations (21)-(28). The remaining unused general
perturbation equations may be used to predict the unspecified performance particulars of the
objective State $2. Accuracy of those predictions, however, it not as high as those of the redesign
objectives. All the constraints of the above problem may result in an empty, non-empty, or
countable feasible domain. In the first case, the redesign objectives cannot be achieved for the
selected set of redesign variables, in which case a minimum error solution in satisfaction of the
redesign objectives is achieved by a generalized inverse algorithm [1, 2, 11, 15]. In the second
case, an optimum solution is achieved using an optimality criterion (29).

11.3. LargE Admissible Perturbation (LEAP) Algorithm

The redesign problem formulated by PAR in Section 11.2 can be solved by a LEAP algorithm.
Many LEAP algorithms .have been developed to solve a variety of two-state problems [1, 2, 14,
15, 28] and have been documented in detail. Suffice to present here the basic steps and difficulties
of the solution algorithm. The LEAP algorithm developed to solve the redesign problem is

L outlined in Figure 2. It starts from the baseline smJcture (S1) and reaches incrementally the I.J
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[-objective $2 by prediction and correction. In the prediction phase of the algorithm, the small 7
/ perturbation method [24, 26, 27] is used. The modal dynamics general perturbation equations are /

linearized. For that purpose, increments are limited to 7% differences between $2 specifications
and the corresponding S 1 properties. Predictions are small but inadmissible because admissibility
conditions (22) and (23) are linearized. In the correction phase, perturbations are corrected by
satisfying the nonlinear general perturbation equations and are forced back into the admissible
space by satisfying the nonlinear admissibility conditions. The total CPU time for redesign may
be reduced by a factor occasionally as high as 4 when in the first increment the space of cognate
modes is identified and thereafter all computations are performed in that space. Such is the case
for torsional redesign [2] of the offshore tower in Figure 5. Torsional modes (3, 18, 19)
constitute one cognate subspace with very weak interaction with other modal subspaces such as
those for bending and stretching.
In each increment, in both phases the resulting problem may be underdetermined or

overdetermined depending on the relation between the number p of redesign variables c_e , the

number of equality constraints ($2 specifications) n = no0 + n o + n u + n a + n b + nob + n a + nab,
and the 2p bounds on the aeS. When the problem is overdetermined, a minimum error solution

in satisfaction of the $2 specifications is produced by a generalized inverse algorithm. When the
problem is undetermined, it is solved by optimization using the minimum change criterion in
equation (29). To achieve this global objective, at each increment the following objective is
minimized

P I l-1 12min_ (l+tO_e)l"I (l+q 0_e) - 1 (30)

e=l L q=l
The problem is solved by quadratic programming [8] or sequential quadratic programming [7]

depending on whether the expression for [Ak] is linear as in equation (18), or nonlinear as in the
case of plate and shell redesign. In those cases, the plate or shell thickness is selected as redesign

variable resulting in a cubic expression for [ilk] in terms of the aeS. [AS] is always a nonlinear

expression of the aeS because [Se] depends on the distance of the point where the stress is
computed from the neutral axis. The LEAP algorithm is implemented in code RESTRUCT
(REdesign of STRUCTures) [3]. It is 27,000 FORTRAN 77 commands and may serve as a
postprocessor to any special or general purpose FE code. We presently use it to postprocess
MSC/NASTRAN.V64 data on the secondary (LIB) main frame computer (IBM-3090) of the
University of Michigan.

The LEAP algorithm outlined above finds the optimum objective smacture $2 without trial and
error and with no additional FEAs. The [k] matrix inversion required in static deflection and stress
redesign is avoided by using modal expansions as shown in equations (24) and (25). Thus, an
accurate modal basis is mandatory even as $2 moves far away from S I. LEAP algorithms can
surmount the following three difficulties as well. All general perturbation equations (which
become equality constraints in the optimization problem) are strongly nonlinear implicit
expressions of the redesign variables a e . The static force vector {f'} may depend on the

structure's geometry (e.g. hydrodynamic loads) and consequently change in the redesign process.
Finally, the set of specifications provided for $2 are usually incomplete and only some d.o.f.s of
specified modes are defined.

III. NUMERICAL APPLICATIONS

L

A total of 42 numerical applications are presented in this section on optimal redesign of four
different structures [22, 9, 31]. Results are summarized in Tables 1, 4, 5, 6 and show the
accuracy of code RESTRUCT for applications with number of redesign variables ranging from 8
to 21; natural frequency and mode shape redesign objectives changing by a factor ranging from
0.3 to 2.0; degrees of freedom ranging from 48 to 896. For each redesign objective, Tables 1, 4,
5, 6 show the objective value, the value actually achieved as computed by reanalysis with
MSC/NASTRAN and the corresponding relative error. CPU time and numbers of extracted
modes n r , admissibility conditions n a , and redesign variables are also shown. The values of the
redesign variables of the optimum solution are not shown. The optimal solution appears in the]



93
Third International Conferenceon Inverse Design Conc_pLsandOpumLz_nonin Engine_nng Sciences
(ICIDES-III). Editor: G.S. Dulikravich. Washineton D.C.. October 23-25. 199t.

V form of optimal Eucledian norm of the OreS in Tables 5 and 6; and in the form of the Hasover-
Lind reliability index [10] in Tables 1 and 4.

l

7

10-element 48-d.o,f, beam: The clamped-hinged beam in Figure 4 is subjected to a uniform load

in the y direction and a concentrated load applied at node 7 in the z direction, co1 = 183.092

rad/sec, the horizontal and vertical deflections at node 7 are v 7 = 12.151 mm and w 7 = 17.733
mm as computed by MSC/NASTRAN. Redesign variables and structural _oups are shown in
Table 2. The accuracy of the redesign process is shown in Table 1 for one, two or three
simultaneous redesign objectives. The problem of reliability analysis is studied assuming

randomness in geometric properties, A (area), Iy, I z (moments of inertia), and material properties
E (Young's modulus) and P (density). The fractional changes _e are assumed to be

independent normal random variables of zero mean. Standard deviations are selected as OaE I =

0.40 for bending rigidities EIy and EI z , and O%A = 0.30 for mass per unit length 9A. In

order to compute the probability of failure to first (FORM) or second (SORM) order [20],
computation of individual and joint design points and the corresponding Hasover-Lind reliability

index [3 is required as shown in Figure 3. Computation of 13 is achieved by transforming the

a.eS to independent standard normal random variables through the Rosenblatt transformation [ 13].
These numerical applications as well as those following on the offshore tower show that large
admissible perturbation methods can introduce sophisticated structural analysis in reliability
without simplifying the structural model and without repeated FEAs [4].
104-element 192-d.o.f. offshore tower: The offshore tower shown in Figure 5 is 69.95 m high
and operates in 45.72 m water depth. The tower at the base is square with a 38.10m side and
tapers linearly to 22.86 m at the deck. The FE model of the tower is composed of 104 circular
tubular beam elements and has 192 dofs. Loading on the tower is due to: (i) 240 tonnes deck load
which is applied to the structure as uniformly distributed load at the deck nodal points. (ii) Wave
hydrodynamic forces calculated for a design wave of 182.88 m length and 6.10 m height using
Morison's equation. The wave propagates in the x-direction. (iii) Wind generated water current in
the x-direction with linear velocity profile of 1.03 m/see at the mean free surface waterline and zero

at the sea bed. 031 = 032 = 4.695 tad/see for the first bending modes in the XZ and the YZ

planes. 033 = 5.353 rad/sec for the first torsional mode with respect to axis Z. Redesign
variables and structural groups are shown in Table 3.

Failure states are defined by deterioration factors in the f'trst and third eigenvalues of 1.54 and

2.00. Geometric and material properties are random. The fractional changes (XeS, shown in
Table 3, are assumed to be independent normal random variables with zero mean. Standard

deviations are selected as (YOtEi = 0.40 for bending rigidity EI and _otp,_ = 0.30 for mass per

unit length pA. Design points are again computed by postprocessing FE analysis results for the
baseline design only. It should be noted that both in Tables 1 and 4 the computed [3 are very high
because the external load is deterministic and limit states were pushed as far away from the
baseline design as possible in order to demonstrate the accuracy and limitations of code
RESTRUCT.
64-element 216-d.o.f. plate: The clamped-free-free-free plate in Figure 6 is subjected to a uniform
load p and has the dimensions and properties shown in the figure. Its response is computed by
MSC/NASTRAN and redesign is performed by RESTRUCT. The incremental optimization

problem is nonlinear and solved by sequential quadratic programming [7] because [Ak] is a cubic

expression of the O_eS which represent fractional changes of the plate thickness [17, 22]. The
plate is subdivided into 8 structural groups each containing 8 finite elements. Results of redesign
are summarized in Table 5 and show very high accuracy even for changes by a factor of 2 in

eigenvalues and maximum deflection.
144-element 896-d.o.f. cTlindrical shell: The simply supported shell shown in Figure 7 is
subjected to hydrostatic pressure load p due to 286 meters submergence in salt water [23].
Dimensions [25] and properties are also shown in the figure. Its modal dynamic and static
deflection response is computed by MSC/NASTRAN [16, 18]. The optimization problem in each
increment is nonlinear and solved by sequential quadratic programming [7]. The cylindrical shell
is subdivided into 5 structural groups and even though symmetry is not forced by linkingJ
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symmetric groups (1 and 5, 2 and 4) as was done in the plate redesign problem, symmetry was-
preserved in the redesign process. Results of code RESTRUCT are summarized in Table 6 and 1

show good accuracy even for changes by a factor of 2 in eigenvalues and deflection.
In all of the above applications, the LEAP algorithm in RESTRUCT can be pushed further by

taking additional incremental steps if higher errors are considered acceptable. For higher accuracy,
however, one more FE analysis may be used after about 10 increments.

CONCLUDING REMARKS

Several two-state problems in structural analysis, design, and redesign can be formulated by
PAR (Perturbation Approach to Redesign) and solved by a LEAP (Large Admissible Perturbation)
algorithm. The objective structural design is found incrementally without trial and error or
repeated FEAs for differences in response from the baseline design of the order of 100% or more.
In structural reliability, PAR provides an attractive alternative to Stochastic Finite Elements and the
Systems approach.

Computer code RESTRUCT which implements the large admissible perturbation
methodology, is being developed since 1983, has been tested thoroughly and has generated
confidence in its potential to solve two-state problems. Several theoretical and numerical
developments are under way. New types of finite elements are being introduced; new structures
are being redesigned, such as stiffened plates and shells; new two-state problems are studied, e.g.
submarine acoustic noise reduction, redesign for buckling objectives, redesign for stress
objectives; a perturbation approach to reliability analysis and design is being developed; larger
scale structures are being redesigned by postprocessing FEA results by MSC/NASTRAN.V66
which has superelement capability. For that purpose, a supercomputer version of RESTRUCT
running on the San Diego supercomputer has been developed.
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Simply Supported Cylindrical Shell

Properties : Response :

E = 2.07.10s HPa TI = f2 = 13.0 Hz

t_ = 7.833"10-gNsecZ/mm 4 1"3 = f4 = 14.3 Hz

V =0.3 f5 = f6= 17.5 Hz

Length= 15.080 m Umlx = 1.061 cm

Radius = 5.029 m

Thickness = 5.00 cm

Hydrostatic pressure p = 2.967 rfPa

Figure 7. 144-element, 096-d.o.f. cylindrical shell

Figure 6. 64-element, 216-d.o.f. plate

Table 1. Redesign and reliability of clamped-hinged beam

t_ 2
Wl /_1

c_, r.s." a,.,,,,a),i, g,_od*_)
: 0.48_ 0.4578 .0.205

2 -- -- --

3 -- -- --

4 0.4588 0.4570 -0.401

5 0.4`588 0.4554 -0.736

6 -- -- --

7 0.4588 0.4545 .0.931

I I 0.3 0,2892 -3.,586

12 -- -- --

13 -- -- --

14 0.3 0,2959 -1.3"/9 •

1,5 0.3 0.2841 -5.271
16 -- -- --

17 03 0,2940 - 2.002

v_ / v_

F.S. ° Flea.ndyiis E,rrorI% )

-- m _

2.0358 2.0440 0.405

2.03,58 2.1124 3.762

2.0358 2.I 125 3.769

2.0358 2,1893 7.542

-- R --

3.0 3,0122 0.40?

3.0 3.1554 5.179

3.0 3.2042 6.8/)1

3.0 33282 10.942

.,,.. i oPoio.io.l,F.s." _-,y,, _=o,1%) (.-_)
.... 7.6,5 31050 9 8 14

- - - 11.40 5_0 10 12 14
2.o_8 zo_,_ 0.489 r._ ,_07_ 9 8 14

-- -- -- 20.83 75520 g 12 21

2.0368 2.0568 1.033 7.36 68486 II I0 14

2.0358 2.0701 1.684 15.09 90435 9 9 14

2.0358 2.0737 1.863 18.03 10,55928 10 12 21

-- -- -- 13.02 91131 11 I0 14

-- -- -- 19.52 80156 10 12 14

3.0 3.2152 T.173 1131 I08S12 II 12 14

-- -- -- 39.65 116314 9 12 21

3.0 3.0997 3.325 15.63 99915 11 10 14

3.0 3.2969 9.898 25.40 101394 7 5 14

3.0 3.1003 3.342 33.`59 167322 10 12 21

c2u,es 4, 7, 13, I S, mad 17 are solved by the l;eneralized inverse slsorithm. *F.S. = Failure St*to I

ORIGINAL p,E,_EIS

OF POOR QUALITY
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Table 9. 10-element 48-d.o.f. clamped-hinged beam :
structural groups and redesign variables

Structural

Group # Redesign Variables, o, ; p = 2I I Elements#

1 ai (oEI_ I ,

2 04 (oct v) •

3 a_ (c_el_l .

4 oio (aEl_) ,

5 ors {aEl_) ,

6 O16 {OEI m ) ,

7 or9 (OEI_) ,

o; (oEi.) , c,3 (a;..,) 1, 2

05 (oEl,) ae (oea) 3.4

as (OEI,) . o9 (%.a) 5

Oil (OEI,) , 012 (OVA) 6

at4 (c, gl,), o_s (seA) 7

Ol7 (OE b) , OlS (%,A) 8
a_0{OEh), o;1 (o.A) 9, 10

Table 3. 104-element, 192-d.o.f. offshore tower : structur_

groups, redesign variables. _d dimensmns

Structural [ RedesignGroup # Variables o,

1 o: (_Icl)

o2 (oeA I
2 Qa (oE,)

o4 (a;,4 }

o_ (oea I
4 or (c,m)

as (_eA)
5 as (art)

6 ou (sEt)

o_2 (%.)

Redesign and reliability of offshore tower

_/_,_
Reanalysis

D_cription

Legs belo_ first

bracing

Legs between first

and second bracine

Legs abo',..,. SeCOt_d

bracing
Horizontal

bracing
Horizontal cross

bracin_g
Ver ticM crcts

bracing

D_ D, E!Number(rn_ , m, , elements

i:,7r;-' f, 737 {

0 61(' 0 5',4 8

C,t:l., L,%; it,

0 483 U464 32

0508 0489 16

0610 0.591 24

Error(%) ] F.S." Reanalysis Error(%) (msec)

0.6598 0.6530 -1.030

0.6598 0.6541 -0.871

4.43 973814 18 8

3.8 925711 19 8

9.37 985832 18 8

8.03 1589439 18 8

21.47 1529708 19 8

13.7 1617425 18 8

1 0.6598 0.6531 -1.018

2 -- -- --

3 0.6598 0.6547 -0.786

*F.S.= Failure State

11 0.5000 0.4871 -2.572

12 -- -- --

13 0.5000 0.4895 -2.100

0.5000 0.4844 -3.112

0.5000 0.4877 -2.462

p = 12; cases 12 and 13 are solved by the generalized inverse algorithm.

Case

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Table 5. Redesign of 64-element 216-d.o.f. plate

12 2

Goal Reanalysis Error{%)

1.2867 1.2844 -0.177

2.0000 1.9818 -0.909

1.2867 1.2842 -0.195

2.0000 1.9801 -0.997

¢2 2

_2 /_2

Goal Reanalysis Error(%)

w I

Goal

0.7579

0.5000

0.7772

0.5000

0.7633

0.5069

0.7818

0.5064

Error(,%) ]

0.718

1.374

0.594

1.289

1.2867 1.2848 -0.144

2.0000 1.9848 -0.760

1.2867 1.2840 -0.204

2.0000 1.9747 -1.264

1.3195 1.3157 -0.287

2.0000 1.9721 -1.395

1.2867 1.2844 -0.173

2.0000 1.9806 -0.971

1.3195 1.3093 -0.774

2.0000 1.9104 -4.479

1.1589 1.1572 -0.140

1.5000 1.4875 -0.831

1.2867 1.2788 -0.621

2.0000 1.9198 -4.011

1.3195 1.3103 -0.697

2.0000 1.9341 -3.397

1.1589 1.1574 -0.125

1.5000 1.4941 -0.395

1.1761 1.1691 -0.591

1.5000 1.4408 -3.950

0.7772

0.5000

0.6598

0.3536

0.7772

0.5000

0.6598

0.3536

0.7821

0.5077

0.6649

0.3600

0.7817

0.5063

0.6678

0.3710

0.631

1.531

0.787

1.831

0.577

1.259

1.224

4.945

0.0267 263

0.2354 713

0.0358 420

0.2794 1044

0.0295 440

0.2816 1199

0.0275 381

0.2407 1037

0.0549 562

0.4378 1532

0.1561 833

1.2394 2072

0.0297 562

0.2817 1528

0.1618 832

1.3025 2065

In all cases, lit = 7, no = 5,p = 8.

Table 6. Redesign of Simply Supported Cylindrical Shell

# Go_ ReanMysis Error(%)

1 1.3310 1.3200 -0.900

2 1.5700 1.5300 -2.700

3 1.9171 1.7800 -7.000

4 1.9171 1.7800 -7.000

5 1.331 1.3200 -0.900

6 1.9171 1.7800 -7.000

r2e 2

w2 /_2

Goal Reanalysis Error(%)
__ m __

m __ --

__ __ m

1.6700 1.5000 -9.000

Goal

0.6480

0.648

u_/us

Reanalysis

0.6610

0.646

-- 0.5867 549

-- 1.3300 715

-- 2.4800 1077

-- 2.486 2031

2.000 0.5790 940

0.00 2.486 2131

L
In all cases, n, = 5, no = 5 1
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2 STRUCTURAL DAMAGE IDENTIFICATION USING

MATHEMATICAL OPTIMIZATION TECHNIQUES
. .

Department of Aeronautical and Astronautical Engineering

The Ohio State University _ . p./_,_
/,!i 2 "

Abstract 2

An identification procedure is proposed to identify the damage characteristics (location and

size of the damage) from dynamic measurements. This procedure was based on minimization of

the 'mean-square' measure of difference between measurement data (natural frequencies and mode

shapes) and the corresponding predictions obtained from the computational model. The procedure

is tested for simulated damage in the form of stiffness changes in a simple fixed-free spring-mass

system and symmetric cracks in a simply-supported Bernoulli-Euler beam. It is shown that when all

the mode information were used in the identification procedure it is possible to uniquely determine

the damage properties. Without knowing the complete set of modal information, a restricted region

in the initial data spaze has been found for realistic and convergent solution from the identification

process.

Introduction

There is a considerable body of research on identification problems, that is, the problem of

identifying the engineering properties or reconstructing the structural configuration of a vibrating

system from certain natural frequency spectra and/or corresponding mode shape. Such problems

were considered by Barcilon [1, 2], McLaughlin [3, 4], Gladwell [5-7], and Gladwell el al. [8]. Most

of these studies involve the determination of material properties fi'om natural fl'equencies, and

they emphasize the existence, uniqueness, and methods for determination of properties (termed

'reconstruction').

An detection procedure was developed by Shen and Taylor [9] to determine the crack character-

istics (location xc and size cr of the crack) of Bernoulli-Euler beams from their dynamic response.

The idea of this procedure was related to methods of structural optimization. Specifically, the

structural damage was identified in a way to minimize one or another measure of the difference

between a set of data (measurements) Ta, and the corresponding values for dynamic response Md

obtained by analysis of a model for the damaged beam. This may be expressed symbolically as the

following optimization problem:

min norm(Td - Aid). (1)
,_¢1CT

Naturally, the minimization represented here is constrained by the equations which model the

physical system. Moreover, as indicated in the discussion by Shen and Pierre [10, 11], one can

note that the more modal information used for crack detection, the more accurate and reliable the

result that can be achieved. For practical purposes, the objective of Eq. (1) was formulated based

on a certain set of specific modes; specifically the first three modes are considered in the inverse

procedure.

In this study the corresponding to the mean-square measure of the norm, as shown in Eq. (1),

is examined. The identification process is based on minimization of the 'nman-s(luare' measure of

difference between measurement data (natural frequencies and mode shapes) and the corresponding

!predictions obtained from the computational model. The identification procedure is tested for I
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_imulated damage in the form of a symmetric cracks in a simply-supported Bernoulli-Euler beam

and a fixed-free spring-mass model. The uniqueness and reliability of the identification process is

confirmed by solving several damage identification examples with specified damage positions.

Problem Statement

In this section, variational formulations for tile identification of damaged one-dimensional

structures axe presented. The mean square differences between measured and modeled values of

frequency and mode shape are employed as the objective function in one of the formulations. In

other words, the inverse process seeks to determine the damage parameters, location xc and size

cr, in the mathematical model to minimize the mean square difference between the test data and

analytical predictions. The problem formulations are presented in forms of a cracked Bernoulli-

Euler beam and a multi degrees of freedom (DOF) spring-mass system.

Cracked beam model

In the treatment of this problem, it is assumed that the testing information (data) is provided

from certain test points distributed over the structure. This data is comprised of fi'equency and

mode shape information associated with the lower several response modes.

For a simply-supported uniform beam containing one pair of symmetric cracks (see Fig. 1),

the problem of optimization in crack detection can be expressed, in terms of comparisons between

modeled response and test data, as

min [norm(anna- =wo, - (2)
Cr_.rC

subject to constraints that define the beam response we, (ie., the equations for fl'ee vibration), and

which prescribe appropriate normalization of w_ and test data wt_.
d-h

Here cr = -7- represents crack ratio (a measure of crack depth), and zc identities crack

position (see Fig. 1). Also, the objective function measure of differences between measured and

modeled values of deflection and frequency in gq. (2) is stated for present purposes in the form:

M T

norm(w_a - 2_,_, wt,_-w,.)=(__.[(w_.-_)2+ y'_(w,o(x,.,,) - w,.(z,.,))2])½ (3)
a=l m=l

where w_, w,, represent the natural frequency and mode shape of e_th bending fi'ee vibration

mode, M is the number of modes for which test information is available, and, once again, the

corresponding test data axe symbolized by w,a and wt_. Here Xtm (m = 1,2 ..... T) locates the rn-th

out of T measure stations, respectively. The measures wt_ and wo that appear in the norm must

be normalized on a common basis in order to facilitate comparison between the data and model

values.

The symbol _ is introduced to represent the square of the norm given in Eq. (3). The

identification problem now can be stated:

subject to:

min ¢ (4)
L"T t_C

fot {EIQ(w"(z)) 2 - w]pA w_a(x))dx = 0 (5)

T-1

-- = 0 (6) ,
m._2
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r (cr + a_zc) - R <0

cr < cr < -_

xc < xc <

(7)-]
(8)

(0)

where a,_=l .... ,M, _a is a weighting factor on the cr and xc, R represents tile upper bound on

value cr + a_zc, and _"_, xc, and _"_, cr represent the upper and lower bounds of tile crack (damage)

parameters zc and cr, respectively. (Note that both upper and lower bounds on the variables cr

and zc are necessary in the present problem.) Since wo comprise an orthonormal set, r]oZ is defined
as

T-I

2 [z,,.,, Aztm, lim _7_0 = 0 for a #/3 (10)r}a_ = E Wc_
T---*oo

m:2

The effect of cracks on the structural properties of the beam is reflected by factor Q in Eq. (5),

as described for symmetric surface cracks in Shen and Pierre [10]. In other words, the optimization

parameters xc and cr cited in Eq. (4) enter the problem via Q.

According to the K-K-T (Kurash-Kuhn-Tucker) necessary conditions for the optimization

problem Eqs. (4-9), there exist Lagrange multipliers Ao, , Ao/3, and Fk which satisfy the following

equations (the notation '].' refers to solution points):

A_ > 0

Aa_ > 0

rl [(cr +__xc)- R] I.= 0

[r_ (_ - _r)] I.= o

[rz (_c- _)] I.= 0

[r_ (_- _c)] I.: o

[rs (cr- _)1 I.= 0

The solution must satisfy the following three equations as welh

(11)

(12)

(13)

(14)

(15)

M

+E
B=c,+l

[2(_yo-_I) + _oRAC_]I.= 0

[(EIQw:(z))"-w_pAw,_(x)] I.= 0 ;x,m < x < _,{_+,)
T-I a-1

m=2 /3=1

(16)

(17)

Aoaw#(x)]Axtm + 2A,[(EIQw_(x))"- w2opAwo(x)]} I===,_1.= o (18)

Note that the above equation of motion (Eq. 17) is valid interval by interval over the span of the
structure.

Finally, the conditions for stationarity of q) w.r.t, the optimization variables cr and zc (ie.,

the optimality conditions) are:

J
[__, Ao(EI/o (w_(z))2dx) + 1P, - F: + F_] ].= 0 (19)

c_----1
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F
, o(EZ + rl _+ r3 - r41r.: 0 (20)

a=l

* The problem formulation for the numerical method-mean square criterion

The purpose in this subsection is to re-state the inverse cracked beam problem with mean

square criterion, Eqs. (4-9), in the following form that is more convenient for computational pur-

poses. With the introduction of symbols ( and T for convenience, tile statement becomes:

M T

Xl a=l m=l

subject to :
T T

m=l m=l

T-1

0

m=2

0 < cr < 1.0

0 < xc < 1.0

where a,/3 = 1,...,M, variable vector x_1 = {cr, xc, _c,, wa (zt,,,) },

¢z_ l't p A
_o = El_r 4

and

(22)

(23)

(247

(25)

(26)

T T

To = [a4Q Z (wt'_(x'm))2 -_o Z (wt°(xt'))2l'Lx'm (27)
m=l rn=l

S.pring-mass model

The spring-mass model to which the present identification procedure is applied is shown in

Fig. 2. It consists of 3 masses connected by linear springs of stiffness defined by

dm_)3 (28)= k(1.0- -5--

where dmi is defined as a damage parameter at i-th spring. If dmi is interpreted to represent

the same physical meaning as cr does in the cracked beam model, the system's damage condition

may be introduced by specifying a certain value to 'damage parameters'. For instance, according

to Eq. (28), a damaged condition can be constructed in which stiffness drops 25% and 507o at

the spring 2 and 3. This is accomplished by assigning the values din2 and din3 to be 0.2743

and 0.6189, respectively. In a sense, the spring-mass model can be viewed as a simple simulation

analogy of the cracked beam, ie., both extent and location of damage can be represented in the

model. The fundamental frequencies wi of axial vibrations are related to the mode shapes _, =

(ul,u2,u3) T ,i = 1,2,3 through the equations:

_T[IC,]_- = 0 ;i = 1,2,3 (29)

where _i= -_. Therefore, the present damage identif_ :tionproblem can be stated as

3 3

min Z[(_ti-_i) 2) + Z(f2tji-- "ui,) 2] (30)
I :c=drai,{,,fi, i=1 j= 1!
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ubject to:

_T[If,]fii--_i_T_ = 0 ;i= 1,2,3

_Tfzj_aij =0 ;i,j= 1,2,3

0 < dmi <_ 1.0

(31)

(32)

(33)

Numerical Analysis

The numerical optimization technique set forth in this study for vibrating cracked beam iden-

tification problems is accomplished using the VMCON optimization package program (this imple-

ments a sequential quadratic programming method). The VMCON program uses Powelt's algorithm

which is an iterative scheme designed to converge to a point that satisfies the necessary" conditions.

Additional information regarding to VMCON is available in Ref. [12].
Cracked beam model

The cracked beam model to which the identification procedure is applied is shown in Fig. 1. It

is a simply supported beam of length l equal to 18.11 of it's thickness 2d, with uniform rectangular

cross-section area A, and a pair of symmetric cracks of cr = 0.5 located at mid-span (xe = 0.5).

Unless otherwise stated, the damage properties (cr and zc) of the simply supported cracked

beams are identified by direct solution of the optimalization problems described in the previous

section. The sensitivity to chosen values for the initial crack position xc are discussed later in this
section.

• Ezarnples with position of the crack (damage) specified

Consider the first example for crack identification, the simply supported cracked beam, for

which the crack position zc is known. In other words, only the crack ratio cr is to be identified; there-

fore, the variables in this problem are cr, {'s, and mode shapes w_,(x) (a"1 = {cr,_o, Wo(Zlm)},X 2 =

{Cr,{_,a_i}). This simplified example problem with the crack position specified (xc = 0.5) is

presented to demonstrate the concept of the crack identification procedure described in the last

section.

In this example, it is assumed that the dynamic measurements are collected at 9 test positions

(T = 9) equally spaced over the span. The first and last test stations are located at the left and

right supported end, respectively, tIence, the length of each test span Axtm,rn = 1,...,T - 1 is

determined to be 36.22d In structural dynamic testing, ordinarily' only a relatively small subset

of the theoretically available eigenvalues and eigenvectors can be measured accurately, ie., realistic

information on higher modes is difficult to obtain from the measurements at a limited set of test

stations. Only information from the first three modes is to be used as test data in the present

identification process. Furthermore, according to the observations in Shen and Pierre [10], the even

modes of a simply supported beam are not sensitive to a mid-span crack; therefore, in effect only

first and third mode (a = 1, 3) information is used to represent crack damage.

Once again, the crack identification problem presented by Eqs. 21-25 is solved here with a

specified value xc = 0.5. For given initial values of x_., this optimization problem is solved to

minimize the criterion F. The results of the cases with various initial conditions are shown in

Table 1. In order to clearly compare the results, only the first three variables, {a, {3, cr, of variable

vector x_1 are listed in the Table 1.

In Table 1, the top row denotes the assumed crack ratio and corresponding first and third

eigenfrequencies. The symbol • denotes the expected optimal solution through the identification

process. The first two column entries, _],_3, indicate the fundamental and the third frequencies

corresponding to the initial crack ratio cr which is given in the next column. The last three columns

[give the final values corresponding to previous entry values. These final values are obtained at the 1
)
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for 1
Fstage where computation is terminated when the further optimal improvements

search obtains

criterionF less than the specifiedtolerance (10E- 5was adopted in the present study). Recall

that for an uncracked beam cr isidenticallyzero. Therefore, in thisexample, itis decided to start

with the case of the initialvalue cr = 0.0 and for each case thereafterthe cr value isincreased by

0.i.

From the resultspresented in the firstcase of Table I,one sees that the parameters _I,_3, and

cr were identifiedto be 0.84684, 70.1348, and 0.50033 from 1.0,81.0, and 0.0, respectively. The

mean square critera F was cut down from I18.13502 to 0.42440E-5. The maximum error is less

than 0.5_ of the test data for these parameters. The resultsare also quite impressive for mode

shapes. In order to observe the global variance clearly,the initial,final,and testing mode shapes

are plotted in Fig. 3. Three curves appear on each plot: the initialmode shape, the finialmode

shape, and the mode shape from test response. The finalmode shape on these plots agrees well

with the test mode shape. This isexpected and verifiedthe accuracy observed from the resultsin

Table i. It can be clearlyseen that accuracy of the mode shapes willworsen ifhigher mode results

are to be predicted. Improvement can be obtained by an appropriate adjustment of the location of

these test stations.However, a sensitivityanalysisof the teststations with respect to the accuracy

of the dynamic measurements isrequired. This isnot considered further in the present study.

In Table l, rows 5 to ll present the resultsfor cases with initialcr = 0.I to 0.8. The corre-

sponding final point values listed in the columns 4-6 show that these cases exhibit, as expected,

similar solution characteristics and accuracy. This provides a physical understanding of the geome-

try of the solution set: for the inverse cracked beam problem with specified crack position, the mean

square criterion of Eq. (21) is a convex function and it is bounded by the constraints of Eqs. (22-

25). Hence, one may conclude that the convergence of the present optimization problem is obtained

independent of the initial data chosen. In other words, as long as the initial data is selected within

the problem's feasible domain, an accurate and unique solution through the identification process

is expected.

Clearly the prediction of mode 3 shape shown in Fig. 3 fails to reproduce the expected sin

curve. This is because the 3rd mode shape was plotted based on the deflections of the mode shape

measured at only 9 test stations. While this reflects a limitation on how well mode shapes are

portrayed, the quality of the final result for the identification problem is unaffected.

• Simultaneous identification of crack position and depth

The second numerical example deals with the crack identification of a simply supported cracked

beam with unknown crack ratio and with crack position unknown. In this treatment, the variables

in the optimization problem are cr, ze, _ls, and mode shapes wo(x) (x, 1 = {cr, zc,(o, w_,(xtm)}).

Due to the limitations of the VMCON program, the examples that concerning with the testing

mode shapes wt provided in the form of continuous functions are not shown in this subsection.

The formulation of the crack identification problem (Eqs. 21-25) is tested again with both

crack position and depth are assumed unknown. In the first few cases, the simulated dynamic test

measurements are assumed to be collected at 9 equally spaced test stations (T = 9). The first

and last test positions are located at the left and right supported end, respectively. This example

will be solved a second time using an increased number of test stations, to provide information on

sensitivity of the procedure to the amount of test data.

In Table 2, the top row denotes the assumed crack ratio, crack position, and corresponding

first and third eigenfrequencies. The symbol • denotes the expected optimal solution through the

identification process. The first column entry T denotes the number of test stations used to collect

dynamic measurements. The second and third column entries, _l, _3, indicate the fundamental and

the third frequencies corresponding to the initial crack ratio cr and crack position xc, which are

given in the next two columns. The last four columns provide the final values corresponding to

L
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[the previous entry values. These final values are obtained at the stage where the computation is|

terminated, when the optimal search obtains step-wise improvements of F less than a specified

tolerance (10E - 5 in the present study).

Table 2 shows that cases with T=9 have the final values of sc close to sc', but almost all of

these cases have unacceptable final estimates of =c and cr. For instance, if the initial position

is selected as xc = 0.4 and cr = 0.4, the values of zc and cr at the final iteration are 0.99789

and 0.36289 which are approximately 98% and 28% different than the given test data. In other

words, evidently the configuration with zc = 0.99789 and cr = 0.36289 is able to provide another

minimum value of the criterion (besides the one associated with the expected result). This cracked

beam configuration is shown in the solid curve of Fig. 4 . The mis-match between final and test

mode shapes can be clearly seen. This observation confirnled the unacceptable error previously

obtained in the comparison of zc and cr between the final and test data. Except for the case with

initial cr = 0.4 and xe = 0.48 which provides less than 1% estimation error, the rest of the cases

in Table 2 with 9 test stations are also found to have similarly large estimation error. Therefore a

dependable solution in crack identification is almost impossible to achieve on the basis of the 9 test

stations simulated measurement information on first and third mode response. This confirmed the

observations in Shen and Pierre [10, 11], ie., for a cracked beam with an unknown crack position,

a unique solution is not to be expected.

However, by comparing the third mode shape in Figs. 3(b) and 4(b) to the mode shape in

Fig. ll(c) of Ref. [10], it can be seen that an accurate third mode shape can not be approximated

based on the displacements collected from 9 test stations only. This implies that the accuracy of

the above computational identification might be improved if the third mode is approximated well.

Therefore, the cases with more test stations should be examined since they would clearly provide

better mode shape approximation. The largest number of test stations which can be accommodated

in the identification procedure is 45, due to the limitations of the optimization program package.

Once again, the test measurement points are equally spaced, and first and last stations are set

located at the left and right supported end, respectively. The VMCON problem formulation is

identical to the case of T=9; however, the variable vector £ is expanded from 22 components to 94.

Rows 12 to 17 of Table 2 summarizes the results through the minimization process. As in the

previous cases, the final values of frequency _ are observed to be close to test values _'. Acceptable
final solution values for xc and cr are shown in the results of the cases in which initial zc and cr are

selected within the range from zc = 0.4,cr = 0.4 to xc = 0.6, cr = 0.6. On the other hand, within

this range, good agreement is also shown in mode shapes. Figures. 5 and 6 display the initial,
final, and test mode shapes for cases with the initial zc = 0.4,cr = 0.4 and zc = 0.6, cr = 0.6.

Excellent agreement is observed between the final and test mode shapes. Moreover, by comparing

the final data curve in Figs. 5 and 6 with the mode shape in Fig. ll(c) of Rcf. [10], a more accurate

third mode is approximated. This indicates that more accurate information on mode shapes is

required to obtain a satisfactory solution from the identification process in the case where both
crack position and crack depth are unknown.

Questions arise concerning the conditions under which the identification procedure can pro-

vided an unique solution. As discussed in Shen and Pierre [10, 11] and concluded in the studies

of Gladwell et. al. [8], if all the mode information is used in the identification procedure, then

the system's properties can be identified uniquely. However, for practical reasons, in structural

dynamic testing only a small subset of the eigenvalues and eigenvectors can be represented in the

measurement data. Furthermore, even if substantially more modal information would be avail-

able, the minimization search may be prohibitive for such a large-dimensional feasible domain that

would result. These comments are intended to point out certain limitations inherent in the identifi-

cation procedures. These considerations is addressed with the presentation in the following, which r_J
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cl_scribes sufficient conditions for the unique identification from the dynamic measurements of a

multi DOF vibrating spring-mass system.

Spring-mass model

The following examples of damage identification problems were constructed by introducing the

damage through the drop in the stiffness or, more conveniently, the value of each damage parameter

to change the system's dynamics behaviour. These dynamic changes, taken as the test simulation

of response data, are used to deduce the value of each damage parameter via the identification

process.

The numerical optimization technique set forth in this study for vibrating cracked beam iden-

tification problems is accomplished using the VMCON optimization package program (this imple-

ments a sequential quadratic programming method). The damage properties (dmi,i = 1,2,3) of

the fixed-free spring-mass system are identified by direct solution of the optimalization problems

described in the previous section.

The first example corresponds to the identification of a system's damage, dml = 0.0, din2 =

0.5, din3 = 0.25, using first and second mode information. The first five variables, _1,_2, din1,

dm2, and dm3 of each vector x are listed in Table 3. The top row denotes the assumed damage

parameters and corresponding first and second eigenfi'equencies and the symbol * denotes the

expected optimal solution through the identification process. The first and second column entries,

_1,_2, indicate the fundamental and the second frequencies corresponding to the initial damage

parameters, dml, dm2,dm3, which are given in the next three columns. The last five columns give

the final values corresponding to previous entry values. These final values are obtained at the stage

of the program is terminated when the further optimal search obtain improvements F less than a

tolerance (10E - 5 was adopted in the present study).

In Table 3, each case has the final values of _ close to _', but almost all of them have the

unacceptable final results for xc and cr. Only the case with initial din2 = 0.48 and din3 =

0.24 has less than a 1% estimation error. These results show performance of the present damage

identification process is generally unacceptable if only first and second modes are used.

The first six variables, _1,_2,_3, drnl, dm_, and din3 of each vector £ are listed in Table 4 the

top row denotes the assumed damage parameters and corresponding first and second eigenflequen-

cies and the symbol • denotes the expected optimal solution through the identification process. In

this example, all the modes are used to deduce the damage conditions. Satisfactory predictions are

obtained in each case, in contrast to the results examined in Table 3. Even though starting point

is located at boundary of the feasible set (din1 = 0.0, din2 = 0.0, din3 = 0.0), the agreement is still

precise. These results confirm the expectation that a unique and accurate solution predictions are

assured if all the modal information is included as data in the damage identification process.

Conclusions

A general method for damage identification of a simple beam and a spring-mass system is

presented. The method may be useful as a component of an on-line nonintrusive damage detection

technique for vibrating structures. A formulation is expressed as a direct mininfization problem

statement with a criteria of the mean square difference of natural frequencies and mode shapes

between test measurements and corresponding model values. The damage identification problem

is reduced to finding the damage parameters that will satisfy appropriate constraints and minimize

the mean square difference.

The uniqueness and reliability of the identification process is confirmed by solving several

damage identification examples with specified damage positions. Without knowing the damaged

ocation, a restricted region in initial data space had been found for which there will be a realistic



I07

Third Int#mauonai Conference on Inverse Design Conceots and Opurntzatmn ,n Engineering Scicnc_
(TC:DES-[ID. Editor: G.S. Dulila"avlch.Wasmn_,.onD.C.. October 23-25. ]991.

-and convergent solution from the identification process. This region is small, and can be expanded 1

if substantially more modal information would be available, llowever, the minimization search may

be prohibitive for such a large-dimensional feasible domain that would result.
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1 Test Data: _=0.84703. (_=70.1348, cr'=0.5
Initial D_a ?inai Da_a

LO _ 81.0 I 0.0 t 0.84684 t 70.1348 I 0.50033

0.98841 t 80.0769 ' O.I I 0.84697 I ;'0.1346 I 0.50019

0.972171 78.8135 i 0.2 l 0.84704 I 70.1347 i 0.49998

0.94815 i 77.0062 i 0.3 i 0.84701 I 70.1348 0.50007

0.910:_,;4.3024,04o.84694t
o.;3_163.7_i o.6 o847o5_
0.,574i_.0511i0.7i0.34703,
0._ I_.93,,i0.8i0.34_00,

70.1347 0.50024

70.1348 0.49962

70.1348 0.50034

70A347 0.50009

I

Table i: Numerical resul_ based on meaa square problem statement of Eqs. (21-25} with the crack

(damage) specified (=c = 0.5).

[ Test Da,_ _:_=0.84703,_=70.1348, er':0.5, =c'=0.5 ]

T

9

9

9

9

9

9

9

9

9

9

9

45

4b

45

45

45

45

1
o. I:¢ !_l
0.4 t 0.4 0.69639

0.4 I 0.43 0.70007
0.4 I 0.46 0.84610

0.4 0.47 0.84711
0.4 0.48 0.84704

0.51 I 0.84704

Fina_ Data

i =0.13_9i 0._978910_=9

i70.13470.91029 t0.53775
[70.1347 0.67125 i 0.49033

i=o.1348to.5o554 [ 0.49972I r0.1348 10.60027 0.50526

0.52f0.84704t;'0.1348 i 0.60083 i0.50531
0.531 0.84704 [ 70.1348 f0.60141 10.505,34

I0.54 t 0.8470_t _0.1348 0.002_ 0.494_
i0.5_!0._7021=0._480.0972,0.¢470_

too o. o0 oI,o.1 o o. oo, io.so=i o.oo  o
i 70.1347 , 0.508:38 0.50198

i 70.1348 ) 0.511"29 I 0.49339

htitia_ Da_.

,fi t G
0.91806 t 78.5161

0.91371 76.6,36,5

0.91158 75.1335

0.91056 i 74.7404

0.91063 ) 74.5157

0-7_4_ ) _-S062 I 0.60.73711 64.2643 0.6

o.738_71_.7_9 t 0._
0.7302_! _._727 10._
0.73909 t 66.6112 0.6

0.75452 ! 74.0109 0.60.97475 80.2193 0.2

0.91806 I 78.5161 0.4
0.91531 I 77.2676 0.4

0.96219 78.5819 0.25

0.754,52 , 74.0109 0.6
0.64083 ! _.71_ 0.7

I 0.4 0.84420

t 0.42 0.84686
[ 0.45 0.84643

0.6

1o.7
)0.84645 ] 70.1348 i 0.51723 [ 0.50609

[0.89079(70.1347)0.58895 [ 0.31817

Table 2: Numerical result= based on mean square problem statement of Eqs. (21-25). The pa_ition
of the damage zc i= a v=una_ie.

Trot Dat=' ,_=0.15296, _;=t.2956, _=2._494, dm_=0.0, dm,_=0.5. _m._=0.25

hmial Da_a

f= i f= I ,ira,
0.198O6t L.s.s49(o.o
0.18986( 1.4975 0.0
o.z8123t L4429 o.o
0.17218 L3911 0.0

01_27__420!0.0
01_! _0_ !oo
01_, _0471o.o

i dm_ dm_

0.0 0.0
0.1 0.05

0.2 0.1
0.3 0.15

Fin_ Data

_*l_,dmtldm,' dm_0.15299 L2958 0.21392 0.400_ 0.109+

0.15204 I 1.295510.17_2[0.4174! 0.132_0.15296 1.295010.1347810.4_93 0.157_

0.15297t L2956t0.092_ ]0.4_5 0.18530
0.4 [0.2 I 0.15293 1.2955 )0.04751 i 0.47_ t0.21576

0.44 i0.24 10.15204 I L2956 i0.02043 i 0.48975 [ 0.23502

0.48 !0.24 i015295i L295610.00973!0.49511[0.24281

F

Table 3: .'q'umencal results for spring-mass model using first and second mode i_ormation.



Tei¢ Da.&=' ,_;=0.15296. _=L.2956. :" ") ,=m;=d.0.,_=,..494. am_.'=0.5. _m-_= 0.23

Inma_ Daza J Fin_ D_

0.10806 )..5549 I 3.2469 t 0.0 : 0.0 , 0.0 ', 0.15294 I '..L_66 _ "2.'2494 I 0.0002 I 0.500]. i 0.349_ ;]

0.18086 i.,_975 _ 3.0209 t 0.0 ; 0.J 0.05 i 0.]5294 I 1.29,55 i 3.2494 _ 0,0002 _ 0,500J ; 0.2495 _1

O.18].23 LA429 I 2.8086 I 0.0 _ 0.2 , O.l i 0.15242 I h'm55 I '.'_494 I 0.0067 ] 0.5026 t 0.2442

'0.17218 '=.3g]l I 2.6095 I 0.0 _ 0.3 0.J3 t 0.J52_$ _ 1.2_,_5 i 2.2494 J 0.0039 I 0.5015 I 0.2494:1

0.16275 L.3420 I 2.4232 I 0.0 0.4 I 0.2 , 0.152_0 i i._,_ , 2/2494 I 0.0019 I 0.5008 _ 0.2484 ,I

0,15848 1.3088 2.3329 t 0.0 = 0.44 I 0,24 I 0.]52_5 I J.._0_6 l '2.24_4 I 0,0000 t 0..5002 I 0.2499

0.15494 J L.3046 _ 2.2332 i 0.0 0.48 i 0.24 _ 0.15292 I I.L_J,_6 t ','.2494 ! 0.0004 i 0.5002 0.;496 :

Table 4:Humencz2 rm_J_ /'or =prin_'.mau= modeJ_u._ a/J ch_,e moviemforma._.toa.

.-,air-

V ,at"

2b

I _= -d

Z _ --/tl

F|g,re I. Oeometry o( =. limply =uppoeted b_sm ¢o_t_,inJng • pni_ o_' =yramegrir _*lge crr, k._ _/_

Inid._p_n, zC = _.

k|

Fig.re 2. (]eo_et_y ol & 3 DOF *plain| mu= be•m mo,le.I
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ABSTRACT

The determination of interfacial area density in two-phase, gas-liquid flows is one of the major ele-

ments impeding significant development of predictive tools based on the two-fluid model. Currently,

these models require coupling of liquid and vapor at interfaces using constitutive equations which do not

exist in any but the most rudimentary form. Work described herein represents the first step towards the

development of electrical impedance computed tomography (EICT) for nonintrusive determination of in-

terracial structure and evolution in such flows.

INTRODUCTION

Description of interracial structure and evolution, as well as the gradients which control vansfer of

mass, momentum, and energy at these phase boundaries is the single most important key element and the

challenge for the future of two-phase flow analysis. Indeed, measurement and prediction of phase bound-

ary structure and gradients at these boundaries is one of the major factors impeding development of true

predictive capability for systems involving flows of liquid and vapor or gas mixtures.

There are no methods available today which allow determination of interracial structure and evolution

in any but the most simplistic cases. It is the purpose of this paper to describe a concept which appears to

hold promise for determining the distri bution and evolution of interfacial area density in two-phase, gas-

liquid flows.

BACKGROUND

The concept of impedance imaging includes a body of unknown internal electrical field propemes of

conductivity and permittivity surrounded by electrodes on the bounding surface. These electrodes are ex-

cited electrically either in pairs or groups, and the response on the entire set of electrodes is determineAi.

The excitation can be either applied current (AC) or applied voltage (AV), and the measured response can

be similar. This is undertaken for all linearly independent combinations of excitation and response to pro-

vide numerous sets of data which can then be used to form an image. Maxwell's equations for the behavtor

of the electrical field are utilized to determine the internal distribution of electrical properties which mi ni-

mizes (in the least squares sense) the difference between the computed boundary response (given the exci-

tation) and the measured response. If there are N-electrodes, and all possible independent combinations

of excitation and response are utilized, there axe N(N-l )/2 independent measurements which allows the

field to be broken into the same number of regions within which the conductivity and/or permit_ivity can

be determined. The challenge is to develop an accurate and rapid tomography system coupleA with accu-

rate inverse computational methods which will allow clear images to be determined.
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Research in the development of electrical impedance computed tomography (EICT) has been under-

taken in the geological area [c.f. Dynes and Lytle _] and in the biomedical field [c.f. Seagar, Barber, and

Brown2]. Most methods have used the resistive field because the resistivities of relevant materials are low.

To date, the best of applications applied to real systems produce a ve_, fuzz 3'planar "'picture" of reststivity

or perrnittivity variations but the results are encouraging.

Most EICT methods can be classified by the number of poles used to make a single measurement, and

the method of excitation. Two-pole methods use only two electrodes for both excitation and measurement

whereas four-pole methods separate excitation electrodes from those used for measurement, the measure-

ment generally being a potential difference. Some feel that the four-pole method eliminates errors due to

contact resistance at excitation electrodes, but this is not clearly a benefit [Newell et al.3.4].

Price 5, although unsuccessful, appears to have been the first in the biomedical field to attempt obtain-

ing impedance tomographs using the three-pole method but his reported work failed. His suggestion of

the use of "guarding" methods was followed by others, all of whom were unsuccessful [Bates et al. 6,

Schneider 7, Seagar et al.2]. Furthermore, in the three-pole method, small voltage differences are obtained

by subtracting the measured voltages leading to substantial errors [SmithS].

Contact impedance was minimized by Barber et al. 9, using a two-pole method and high-impedance

measurement methods, but results were quite blurred. Two-pole methods were also used with little suc-

cess by Dynes and Lytle 1 and by Starzyk and Dai l°.

Seagar et al. _l contend that the blurring of two-dimensional results in a continuously variable conser-

vative field is due to nonzero effective wave number (infinite wave length) of the applied signal. They

show, however, that successful reconstructions can be made for certain classes of piecewise constant me-

dia (similar to two-phase systems), and that the process is relatively simple when the discrete zones are

circular in shape.

There can be orders of magnitude differences between the sensitivity of a given boundary measure-

ment to a fixed size body depending on its location. Similar orders difference can thus occur in the eigenva-

lues of the solution matrix thereby making the inversion problem severely ill-posed and difficult to solve

[Tarassenko and Rolph t2, Mural and Kagawa]3.14]. In spite of ill conditioning, good results were obtained

by Wexler _susing a four-pole potential method with real domain reconstructions even where there were

widely varying conductivities in an overall conducting medium--i.e., metal and plastic shapes in a

conducting water field.

lsaacson and coworkers [Isaacson _6, Gisser, Isaacson, and Newel117, Isaacson and Cheney 18] de-

scribed a method to estimate the conditions necessary to distinguish a homogeneous cylindrical body of

one size, centered in a cylinder of a larger size with the region between the two also of homogeneous elec-

trical field structure. This was followed by Fuks et al.34 who also provided methods of estimating the de-

gree of accuracy to be obtained with digital conversion of data. In general, they found that increasing the

number of electrodes can improve the image only up to a point after which better imaging comes only by

improving accuracy of measurement.

Barber and Brown tg-z° developed an iterative back-projection method based on linearization around

a constant conductivity. This method was subsequently improved upon by Santosa and Vogelius 2_but with

mixed results. Beck and his co-workers [Huang, et al.22 Beck and Williams 23]have also developed back-

plane projection methods for analysis of gas-liquid pipe flows of gas and oil. A variational method devel-

oped by Kohn and Vogelius 24is similar to that of Wexler et al. 15but guaranteed to converge. It was shown

by Kohn and McKenney, 25however, to produce results no better than those of Wexler 15.Murai and Kaga-
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wa 13used a"matrix regularization" method based on Akaike's information criterion and eliminated alto-

gether the problem of ill-conditioning.

Yorkey, Webster, and Tompkins (YWT) followed a different approach using Marquardt's condition-

ing method which they stated to be better than Akaike's method. Their results appear singularly successful

in inversion of two carefully-chosen numerical experiments [Yorkey 2_, Yorkey and Webster 27, Yorkey,
Webster, and Tompkins,2S-s 1]. Finite element methods were used to obtain accurate reconstructions in four

iterations. No reconstruction of real situations has yet been reported and Kohn and McKenney 25indicate

the YWT tests were "biased by the nature of the synthetic data."

Very slow transient results were obtained by Brown, Barber, and Seagar 32when a dish of heated saline

solution was reconstructed showing the thermal patterns of convection. From comparison of their results

with Price's estimates of resistivity [Price 5] it seems that changes of the order of 1.5-10 fl-cm were easily

resolved. These results also indicate that there is a good potential for application of EICT methods to natu-
ral convection studies.

Finite element methods seem to have been singularly useful in reconstruction tomography of electrical

fields. Starting with the suggestions of Kim, Tompkins, and Webster 33, this work has been the basis for

the most successful inversions reported on to date [Dynes and Lytle _, Murai and Kagawa _3, and
Yorkey26-31 ].

Yorkey et al. 31examined several other methods including the perturbation method used by Kim et

al.ss, the equipotential lines method used by Barber et al.9 and by Barber and Brown z°, the iterative equipo-

tential lines method (the original one proposed did not iterate), and the method used by Wexler et al., and

similarly by Kohn and Vogelius 24(referenced by YWT). Of the five methods tried, only the YWT method

converged to zero error in overall resistivity, and seemed to obtain the correct result locally, in spite of the

fact that they only utilized adjacent electrodes for excitation--a pattern guaranteed to produce the most

difficult problems with sensitivity. Other methods either did not converge or converged with some error.

On a completely separate track, Newell, Gisser, and lsaacson and their coworkers at Rensselaer have

been developing the multi-pole current distribution (MPCD) method. This method has resulted from

mathematical analysis showing the "best" application of electrical current in a radially-symmem¢ system

to be sin(k0) and cos(k0), k= 1...K where K is half the number ofcircumferenti al electrodes [Gisser et al. 17

Newell et al .s,4 Fuks et al. s4 Isaacson and C heney _8,Cheng et al.35]. Thi s d istributi on is opti mum in effect

because at any instant all electrodes are simultaneously excited and the total input current is the sum of

individual electrode-pair currents thereby increasing the sensitivity and decreasing the effects of noise in

the system. Results on two-dimensional electrode arrays without iteration (Newton One Step Error Re-

construction, NOSER, method s6) are quite fuzzy but are the equal of others described in the literature.

ANALYSIS

Reconstruction Method

The iterative method showing most rapid convergence (Yorkey's resistive network or YWT method)

was extended to complex reactive networks. The computational logical includes two parts. The first part

is the forward problem which is used to generate a voltage distribution using a given distribution of com-

plex conductivity. The second part is the inverse problem which uses the calculated boundary voltages in

comparison with the measured values to reconstruct the conductivity/permittivity distribution.The theo-

retical basis for the algorithm is given as follows. The steady-state governing equation for the voltage dis-

tribution within the inhomogeneous and isotropic field is given by the equation



V -(oVV)= 0. (1)

whereVisthevoltagefieldandcr=(c+jcoe),cbeingtheconductivity,Ethepermittivity,and cothe frequen-

cy. Finite element methods (FEM) are utilized where they are nodalized by' quadrilateral elements then

transformed to squares for computational purposes. It is known that this method converges to the exact
solution where the element size becomes infinitesimal.

The FEM is defined for a reactive network as YV = C. such that the voltage field is given as

-] jVN_ = Y_,.e¢CN,a. (2)

where Y is the N x N indefinite admittance-matrix. The matrix-size parameters are defined as

N = the number of nodes

P = the number of current excitations

M = the number of elements

E = the number of external measurement electrodes

While V represents the voltages of the nodes both inside and on the periphery of the body, a transfor-

mation is made to extract the calculated boundary voltages from the calculated voltage matrix VNxp to

form a new vector fzPx_. The measured voltages on the E-electrodes with P-current excitations are col-

lected to form the vector Vo. _x].

There are differences between the calculated voltages fzPx _and measured voltages Vo. ZPx_on the elec-
trodes. A scalar error function is defined as

4_= l[f_ V0]r[f _ Vo]. (3)

In order to get minimum error, the differential of _ relative to o should vanish. Thus,

_O' = dep = [f,]T[f_ Vo] = 0 (4)
do

where f' = dr/do. The quantity ¢' can be expressed as a Taylor expansion

_,' --" _'(a h') +,/," (oK)V(o h) = 0. (5)

Thus, since ¢' vanishes, the gradient of the conductivity is given by

Va*" = - [_," (oh)]-14_ '(o h') (6)

where

_0' = [f' (oK)]r[f(tr x) - Vo] (7)

and where

"(oh) "-" [f'(aK)]rr'(oK). _8)

The corrections to crr can be obtained after every iteration, until the convergence criteria is met.

A areasonable level of spatial resolution will need many current excitations and so the matrices re-

quired in the inversions can be very large. Since the forward computation of the field potential for a given

complex resistivity pattern involves inversion of a sparse matrix, Gaussian elimination methods used are

computationally expensive. Thus, the Jacobi conjugate gradient (JCG) method (similar to that described

by Carey and Oden 4S_hasbeen utilized for real domain inversions. Time savings was achieved by main-

taining a constant Jacobian for several iterations.

In the case of a matrix having eigenvalues separated by orders of magnitude, preconditioning is ob-

tained by pre-multiplying with the inverse of the diagonal or tridiagonal of the original matrix. The JCG



._C NIr_tl$

method is both extremely fast and absolutely convergent for positive definite matrices such as are antici-

pated in this problem. Since it is not necessary to calculate and store zeros in the matrix, the computational

CPU time is decreased substantially.

The accuracy for both methods are similar. Hestenes and Stiefe146 have shown that if the conjugate

directions are chosen as the unit basis vectors, then the conjugate gradient will be equivalent to Gaussian

Elimination method. Round-off error can also be corrected in the JCG algorithm.

Quadrilateral Mesh Scheme

All computations were undertaken in a dimensionless array of square elements. To easily model geom-

etries having curved surfaces, a transformation from quadrilateral to square elements was included both

for preprocessing and postprocessing of computed results.

The sketch in Fig. 1 shows the quadrilateral transformation scheme. Transformation was accom-

plished in the standard fashion. A shape function N,-- N_(_,rl) is chosen with the values of_ and q defined

in the figure such that the mapping from the parent domain R into the square-element domain. An infinite-

ly small area is Ixansformed using the Jacobian with the following shape functions

N] = (1/4)(1 - $)(1 - r/)

N2 = (1/4)(1 +_)(1 - r/)
N3 = (1/4)(1 +$)(1 +r/)

N4 = (1/4)(1 - $)(1 +r/)

A bilinear expansion form is utilized such that

(9)

x(_,r/) = _0 +(Zl_ +a2r/+ a3_r/

where the a's and 15's are determined by the transformation Jacobian

J= / 2+ 35J"

(10)

(11)

Now the problem to be solved is Eq. (1). It is assumed that the conductivity is piecewise continuous

being constant in each element such that Laplace's equation is solved element-by-element. Thus
4 4

V = _" V,Ni and VV = _" Vi VNi. (12)
i= l i= l

Solving Eq. (1) is equivalent to minimizing the functional

2 R

where R designates the region occupied by the individual elements for which Eq. (13) applies. Thus,

OF
--=0 for i= 1,4
cgVi (14)

which, after minimizing, results identically in Eq. (2). The admittance elements are given by the transfor-

mation,

f'f'Yij = oR Fij (_, rI)d__drl
-1 -1

(15)
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and where

f,) (__,r/) = JilE'Ni+Ji_ &,V, ;;N; ._, ;;._)_ ;;N, _] ;i,.<; ;0;,+ l_X &V.; (161

.,il + 4', 41' = I

RESULTS

Numerical

Square-element conductive arrays. Duplication of Yorkey's results required implementation of the

method using square elements in the resistive mode only. Results obrtained were identical to those found

by Yorkey et al. Convergence is very rapid with the error function [Eq. (3)] for an 8 x 8 array converging

to two significant figures within 4-5 iterations and within I part in 104 within 12 iterations where the con-

trast ratio is as large as I 0,000:1. Aitken's method is also used to improve convergence speed more than
a factor of 3.

Quadrilateral-element arrays. Both real and complex conductivity calculations have been under-

taken: however, the real patterns converge much more readily than the complex. Varying Marquardt's con-

stant and not recalculating the Jacobian matrix every iteration leads to nonuniform convergence.

Figure 2 shows two patterns with the number of iterations required for convergence with the fill pattern

key between the two reconstructions. The original pattern is chosen to be uniform of high conducuvity.

Gauss elimination was used to perform matrix inversions. The ring pattern converges much more rapidly

than the annular pattern because the zones requiring the greatest changes are nearer the boundary. Further-

more, the central region required no change whereas for the annular geometry,, the central zones required
maximum change.

Figure 3 shows the convergence sequence for a 64-element body with real-conductivity elements of

3:1 contrast ratio distributed in a relatively arbitrary pattern. The quantitative resistivity pattern definition

is identical to that shown at the center of Fig. 2. It is seen that there is a relatively rapid convergence for

elements near the boundary even though the change is from one extreme to the other. On the other hand,

changes in the central region require significantly more computations for convergence due to the extreme

lack of sensitivity of regions farthest from the boundaries. Global error for the three cases (arbitrary, ring,

and annular) is shown in Fig. 4, confirming that the more complex the pattern, the larger the number of

iterations required for convergence.

The question of noise and error generally pose real difficulties in the convergence of an inverse prob-

lem to its solution. In the case of the annular geometry, Gaussian noise was addedto the "measured" volt-

ages and the problems recomputed. As shown in Fig. 5, the global error generally decreases until the

effects of the error become important and then become relatively constant. Figure 6 shows the variation

in the local error for each of the four ring layers in the geometry showing increasing error with distance

from the boundary. In the case of 1% Gaussian noise, the local error in the inner elements is above 30%.

Even in this case, however, the noise has little effect on the visual recognition of the pattern (Fig 7).

Computation for these 8x8 reconstructions required approximately 3 minutes on the IBM 3090 com-

puter. Of interest was the computational time required for a significantly larger problem, in addition to the

interest in gaining better computational resolution. For this purpose, a 256-element pattern (16x16) was

computed in two steps: starting with a uniform background pattern using an 8x8 mesh: switching to a

16x 16 pattern when convergence ceased due to the effective noise in the system caused by nonalignment

of pattern and mesh. Starting with an 8x8 pattern, and using a conjugate gradient method for mamx inver-

sion, convergence is rapid at first, then slows as the effective noise becomes dominant. Switching to a grid



size of 16 x 16 results again tn rapid convergence. Computation time in this case for a total of 30 iterations

was 43 minutes on the IBM 3090 and convergence was not achieved, even though the global error was

reduced to 0.00086. A 24 x 24-element problem required 54 minutes for a single iteration.

EXPERIMENTAL

An example of a electrical impedance tomographic image obtained using sinusoidal current excitation

patterns at 15 kHz, and complex conductivity inversion is shown in Fig. 8 (NOSER method, Newell et

al.36). The test geometry used is a rather shallow, two-dimensional bath 500-ram in diameter. Water filled

the dish to a depth of approximately 12 mm except for an empty, 50-mm- diameter beaker placed in the

center of the dish.

The NOSER method is a noniterative reconsta-uction which uses exact solution of the uniform field

problem and exact computation of the first Taylor-series corrections in the iterative process. The results

shown in Fig. 8 indicate the darker regions where higher impedances associated with air are calculated.

In this case, the contrast associated with the central region is only approximate as, for air at 15 kHz excita-

tion the impedance is virtually infinite in comparison with tap water where the resistivity is in the range

of hundreds of ohm-cm. The results show that it is clearly possible to separately identify large separate

regions of gas-phase surrounded by water in a large geometry, even without iteration.

CONCLUSIONS

A potentially useful method for electrical impedance imaging of two-phase fluid distributions meth-

ods has been discussed. The method solves the inverse problem where the internal conductivity field is

piecewise approximated using iterati ve procedures which require computed boundary measurements con-

verge to measured values which exist due to given boundary excitation. Convergence is undertaken in a

manner which minimizes the least squares error between the computations and the measurements. Specif-

ic results of this work are:

1. The internal distribution of complex electrical impedance can be piecewise approximated within a

body by using only boundary excitation and measurement.

2. Square-element FEM modeling of a resistive body allows iterative convergence to 1% within 4-5 iter-

ations and within 0.01% within 12 iterations for all contrast ratios up to 105.

. Quadrilateral-element, FEM modeling was slower to iterate and more sensitive to contrast ratio, per-

haps due to the presence of highly acute or obtuse angles distorting the equivalent square-element

conductivity. Local error in a given element was shown to be considerably slower to converge to a

reasonable error. Elements farthest from the boundary showed slowest convergence, and more com-

plex situations appear to require more iterations for convergence.

4. Complex contrast ratios as large as 102 were found to converge using Gauss elimination for matrix

inversion. Situations with larger contrast diverged.

. The computational methods utilized appear quite tolerant to Gaussian noise allowing inverse compu-

tations to be undertaken with as much as 1% rms noise in boundary "measurements." The global error

is found to diverge from the no-noise case and arrive at a relatively constant value dependent on the

noise. Even with relatively large local errors, visual discrimination of the patterns was easily possible.

6. Application to a practical, laboratory situation shows that even without iteration, reasonable results

can be obtained for complex conductivity fluids.
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NOMENCLATURE

English

c Conductivity

C Current matrix

f Calculated boundary voltage vector

J Jacobian

N Shape function for quadrilateral

transfonnation

V Voltage field

V Voltage matrix
x Cartesian coordinates

y Cartesian coordinate

Y Admittance mamx

Greek

ct Expansion coefficient

15 Expansion coefficmnt

e Pernuttivity

Scalar error function

11 Transformed coordinate

co Radial frequency

o Complex conductivity (c + jcoa)

_j Transformed coordinate

Subscripts and Superscripts and Others

E Number of measurement electrodes

on boundary

i Matrix element index

j Matrix element index
K Iteration number

M Total number of elements

N Total number of nodes

P Number of current excitations

0 Measured

REFERENCES

1. Dynes, K.A., and Lytle, R.J., [1981]

"Analysis of electrical conductivity imaging," Geo-

physics, 46, pg. 1025-1036.

3 Newell, J.C., Isaacson, D, and Gtsser,

D.G. [ 1989] "Rapid Assessment of Electrode Character-

istics for hnpedance Imaging," IEEE-Trans., Biomed.

Eng., in press

4 Newell, J.C., Gisser, DG., and Isaacson,

D., [1988] "An Electric Current Tomograph," IEEE-

Trans. Biomed. Eng., 35 (10), pg. 828-833.

5. Price, LR., [1979] "Electrical impedance

computed tomography (ICT): a new CT imaging tech-

tuque," IEEE Trans. Nucl. Sci. (USA), NS-26, 2, pg.
2736-2739

6 Bates, R H.T., Mc kinnon, G. C., and Seag-

er, A.D., [1980] "A limitation on systems for imaging

electrical conducuvity distributions," IEEE Trans.

Biomed. Eng., BME-27, 7, pg. 418-420.

7 Shomberg, H., and Tasto, M., [ 1981 ] "Re-

construction of spatial resisuvlty distnbuuon," Phillips
GMDH, Hamburg, Germany (FRG), MS-H 2715/8 I.

8. Smith, DN., [1985] "Determination of

impedance using nunmrous simultaneous currents

(D1NSC) - system design and practical applications,"

IEEE Conf. Publ. (Inst. Eleetr. Eng.), No. 257, pg.
69-73

9. Barber, D.C., Brown, BH., and Freeston,

I.L., [1983] "Imaging spatial distributions of resistivity

using applied potential tomography," Elec. Lett., 19, pg
933-935.

10. Starzyk, J.A., and Din, H., [1985] "Ele-
ment evaluation in the resistive networks," Midwest

Sym. Circuits Syst., 28, pg. 178-181

I1. Seagar, A.D., Yeo, T.S., and Bates,
R 4".HT.,[198 ] Fullwavecomputedtomography, pan2:

Resolution limits," Proc. lEE, part A, 131, pg.
616-622.

12. Tarassenko, L., and Rolfe, P, [1984]

"Imaging spatial distributions of resistivity - an alterna-

tive approach," Electron. Lett., 20, 14, pg. 574-576

2. Seagar, A.D., Barber, D.C., and Brown,

B.H, [1987] "Electrical hnpedance Imaging," lEE

Pro¢. 134, Pt. A, No. 2, pg. 201-210.

13. Mural, T., and Kagawa, Y., [1985] "Elec-

mcal impedance computed tomography based on a fi-

rote element model," IEEE Trans. Biomed. Eng.,



BME-32, 3, pg 177-184.

14. Mural, T, and Kagawa, Y., [1986]

"Boundary elemem iteratt ve techniques for detemuntng

the interface boundary between two Laplace domams-a

basic study of impedance plethysmography as an m-

verse problem," Int. J. Numer. Methods Eng. (GB),

23, 1, pg 35-47

15, Wexler, A., Fry, B., and Neiman, M,R,

[1985] "Impedance-computed tomography a[gomhm

and system," Appl. Opt., 24, 23, pg. 3985-3992.

16. Isaacson, D., [1986] "Distinguishability

of Conductivities by,Electric Current Computed Tomo-

graphy," IEEE Med. Imaging MI-5, 91-95

17. Gisser, D.G., Isaacson, D., and Newell,

J.C., [1987] "Current Topics in Impedance imaging,"

Clio. Phys. Physiol. Me,as,, 8, Suppl. A, pg. 39-46

25 Kohn, RV, and McKenney, A., [1989]

"Numerical hnplenmntation of a Variational Method for

Elecmcal Impedance Tomography," Courant Insutute

of Mathematical Sciences, private communication

26 Yorkey, T J, [I 986] Comparing recon-

struction methods for electrical impedance tomogra-

phy," Ph.D. Thesis, Dep. Elec Comput Eng., Univ.

Wise., Madison, WI 53706, August.

27. Yorkey, T.J., and Webster, J.G., [ 1987] "A

comparison of impedance tomographic reconstruction

algorzthms," Clin. Phys. Physiol. Meas., 8, suppl A,

pg 55-62

28 Yorkey, T,I, Webster, J.B., and Tompkins,

W.J., [ 19851 "Errors caused by contact impedance in im-

pedance imaging," Proc, Ann. Conf. IEEE Eng. Med.

Biol. Soc, 7, 1, pg 632-637

18. Isaacson, D., and Cheney, M., [1990]

"Current Problems in Impedance Imaging," in Inverse

Problems in Partial Differential Equations, D Co[i-

ton, R. Ewtng, and W. Rundel[, Eds., SIAM, Philadel-

phia.

19. Barber, D.C., and Brown, B.H, [1984]

"Applied Potential Tomography," J. Phys. E: Sci. In-

strum., 17, pg, 723-733,

29. Yorkey, T.J., Webster, J.G., and Tompkins,

W.J., [1986] "An optinlal impedance tomograpNc re-

construction algorithm," Proc, Ann. Conf. IEEE Eng,

Med. Biol. Soc., 8, 1, pg 339-342.

30. Yorkey, T.J., Webster, J.G., and Tompkins,

W.J., [1987a] "An improved perturbation technique for

electrical impedance imaging with some criticisms,"

IEEE Trans. Biomed. Eng., 34, 11, pg. 898-901

20 Barber, D.C., and Brown, B.H., [1985]

"Recent developments in applied potential tomogra-

phy--APT," in Proc. 9th Int. Conf. Info. Proc. Med.

Imaging, Washington, D.C.

31. Yorkey, T.J., Webster, J.G., and Tompkins,

W.]., [1987b] "Comparing reconstructton algorithms

for electrical impedance tomography," IEEE Trans
Biomed. Eng., 34, PG 843-852.

21. Santosa, F., and Vogelius, M, [1988] "A

Backprojection Algorithm for Electrical Impedance

Imaging," Institute for Physical Science & Technology,

Umv. Maryland, Tech. Note BN-1081, July.

32. Brown, B,H., Barber, D,C,, and Seagar,

A.D., [1985] "Applied potential tomography - clinical

applicanons," IEEE Conf. Publ. (Inst. El_tr. Eng.),

No. 257, pg 74-78.

22. Huang, S.M., Plaskowski, A.B., Xie,

G.C.,and Beck, M.S., [1989] "Tomographic Imaging of

Two-Component Flow using Capacitance Sensors," J,

Phys, E: Sci. instrum., 22, pg 173-177.

23. Beck, M., and Williams, R, [1990]

"Looking into Process Plant," The Chem. Engr. 26

July, pg 14-15.

33. Kim, Y., Webster, J.G., and Tompkins,

W.J., [1983] "Electrical impedance imaging of the tho-

rax,"J. Microwave Power, 18, 3, pg. 245-257.

34. Fuks, L.F., Isaacson, D., Oisser, D.G., and

Newell, J.C., [ 1989] "Tomographic Images of Dielectric

Tissue Propemes," IEEE-Trans. Biomed. Eng., in re-
view.

24. Kohn, R. V., and Vogel tus, M., [ 1987] "Re-

laxation of a Variational Method for ln'_pedance Com-

puted Tomog raphy," Comm. Pure Appl. Math., 40, pg
745-777

35 Cherts, K-S, lsaacson, D, Newell, J.C,

mad Gssser, DG,, [1989] "Electrode Models for Elecmc

Current Computed Tomography," IEEE-Trans.

Biomed. Eng., 36(9). pg 918-924



120
Tr.rc_ tntert_ot,onot C_or_e o_ i_r_e _,_s*Q,r, C, oe_eDts one10Dt_enl2'otto_ m [r_g,r_orm_ S¢_er_e_

36. Cheney, M., lsaacson, D., Newell, J.C.,

Simske, S., and GoNe, J., [1980] "NOSER; An algo-

rithm for solving the inverse conductivity problem,"

Int. J. Imaging. Systems and Tech., 2, pg. 66-75

37. Brown, B.H., and Barber, D.C., [1987]

"Electrical impedance tomography; the construction

and appiication to physioloDcal measurement of electri-

cal impedance images," Medical Prog. Through Tech-

nology, 13, pg. 69-75

38. Brown, B.H., Karatzas, T., Nakaelny, R,

and Clarke, R.G., [ 1988] "Determination of upper arm

muscle and fat areas using electrical impedance mea-

surements," Ciin. Phys• Physiol. Meas. (UK), 9, 1, pg.
47-55.

315-329

43. Kardous,G,, [1987] Etude dela distribu-

tion de la sensibility d_un systeme circulaire multi-

electrodes en vue de la reconstruction d'images

dqmpedance bio-electrique, PhD Thesis, lnstmlte

National des Scmnces Appliquees de Lyon, Villelr-
banne, France

4-4. K]m, Y., Tompkins, W.J., and Webster,

JG., [1982] "Medical body imaging using electncal im-
pedance and nonlinear reconstmctmn," Ann. North-

west Bioeng. Conf., 10, pg. 298-303

45. Carey, G.F., anci Oden. J.T., [1984] Finite

Element Computational Aspects: Vol. 3, Prentice-

Hall, Englewood Cliffs, N.J.

39. Gilbert, P, [1972] "Iterative methods for

the reconstruction of three-dimensional objects from

projections," J. Theoret. Biol., 36, pg 105-117

46. Hestenes, MR., and Stiefel, E, [1952]

"Methods of Conjugate Gradients for Solving Linear

Systems," J. Res. NBS, 49, 6, pg. 409-436

40. Gnffiths, H., [1987] "The importance of

phase measurement tn electrical impedance tomogra-

phy," Phys• Med. Biol., 32, 11, pg. 1435-1444.

41. Henderson, R.P., and Webster, J.G.,

[1978] "An impedance camera for spatially specific

measurements of thorax," IEEE Trans. Biomed, Eng,,

BME-25, pg. 250-254,

42. Kagawa, ¥, Murm, T., and Matsumoto,

O., [ 1983] "Finite element iterative technique for deter-

minmg the interface boundary between Laplace and

Poisson domains--characteristic analysis of field effect

transistor," Int. J. Numer. Methods Eng., 19, pg

Ring

(-1,1)_ (1,1)

(-1,-1) (1.-1) _ (xa,Y_
X

Figure 1. Quadrilateral element transformation

4.5

4.0

3.5

3.0

2.5 [_

2.0

1.5

1.0

0.5

0.0

geometry.

(:_o, Yg) _ f O(x3,Y3

• (xl,yt) R

16 th Iteration 24 th Iteration

Annular

Figure 2. Converged patterns and resistivity index for both annular and nng geometries with

zero permimvity. Contrast ratio: 3:1.



2ndIteration :thIteration

Iteration 30thIteration

Figure3.Typicalconvergencesequencefor a64elementarrayof quadrilateralelements
withzeropermittivity.Contrastratio:3:1.



E ng,n4Per m _ _¢ _ervce_

103

lO0
-0-

0

1:: 10-3

.,O
O

10-6

10-9

lb
Iteration Number

Figure 4. Global error for the three pat-

terns tested.

100

lo2 10°

-_ 10-2

.I

10 4 _..._,,_ _ ....

10 -4 10-3 10-2

Noise, %

Figure 6. Local error for the annular-flow-

like geometry., Inner Cells: • Inner Middle:

÷ Outer Middle: x Outer Cells.

10-1

103

Noise

1%

10-6

10-9 \
0.001%

0.0001%

1 10 100
Iteration Number

Figure 5. Effect of noise on convergence for

the annular pattern.

Figure 7. Converged annular pattern with 1%

Gaussian noise.

Figure 8. Example of electrical impedance re-

construction of an air-water system using the

NOSER method. 36



123

,'_'_u'd In_mauonal Cord_.,_nc.z on 1.nvers,s D,s.sJgn Conae_u and C_am'..'_on m =_.ngme..,snn; S::=nc_
..... -, ..... S.,I .... OP

F
I

Ng - 395s,
"RECENT PROGRESS IN INVERSE METHODS IN FRANCE"

Societe Nationale d'Etude et de Construction

de Moteurs d'Aviation

(S.N.E.C.M.A.) "_, J
Cincinnati, Ohio, U.S.A.

!

OLIVIER-PIERRE JACQUOTTE / _ ,.i // "

MARIE-CLAIRE LE PAPE I_'j:_

Office National d'Etudes et de Recherches Aerospatiales

(O.N.E.R.A.)

Aerodynamics Department
92322 CMATILLON FRANCE

ABSTRACT

Given the current level of jet engine performance, improvement

of the various turbomachinery components requires the use of

advanced methods in aerodynamics, heat transfer, aeromechanics

as well as in other fields.

In particular, successful blading design can only be achieved

via numerical design methods which make it possible to reach

optimized solutions in a much shorter time than ever before.

The present paper focuses on two design methods which are

currently being used throughout the French turbomachinery

industry to obtain optimized blading geometries. Examples are

presented for compressor and turbine applications. The status
of these methods as far as improvement and extension to new

fields of applications is also reported on.
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The ever-increasing performance requirements for jet

engines, together with the fast pace of development programs,

have led designers to rely more than ever on computations when

defining their products. The field of Fluid Mechanics has

naturally been at the forefront of this evolution both in

external and internal aerodynamics. A great deal of effort has

been devoted to the development of powerful numerical tools

which allow both the design and analysis of geometries with the

obvious goal of obtaining optimized shapes that can enhance

performance.

The present paper focuses on two design methods which are

currently used throughout the French industry for turbomachinery

applications. After a brief review of the general inverse

problem in the turbomachinery field, examples of what can be

achieved are presented both for compressor and turbine blading.

In addition, the versatility of one of the methods is demon-

strated by using the example of a jet engine inlet design.

2. A PROPER FORMULATION FOR THE INVERSE PROBLEM

The idea of inverse design methods is obviously not new.

Once the blade or wing designers had the knowledge and the

understanding of the flow around an airfoil, isolated or not, it

was natural to try to define profiles not from the purely

geometrical standpoint but rather by using this very knowledge

of the fundamental profile aerodynamics. It was recognized

early on that there was a direct relationship between the

surface velocity distributions and overall performance. Hence

the idea of defining the profile starting from the velocity
distribution itself.

The inverse problem for isolated profiles in incompressible

flows was first formulated by LIGHTHILL [I]. It consists in

determining an airfoil that produces a given speed distribution

prescribed on the unknown airfoil profile. It was shown tha_
closed profiles could exist only if the prescribed velocity W-

satisfies three integral constraints. In this early work, these

were chosen as the upstream velocity W _ and two parameters

related to the closure of the profile.

More recently, Volpe and Melnik [2] proposed several possible

choices for the design of isolated profiles. In particular,

they showed that it was possible to obtain closed profiles via

introduction of two modification functions for the target

velocity.

For turbomachinery applications, the problem is slightly

different in the sense that i) the flow is quasi-three dimen-

sional (in first approximation) and 2) the profiles are

entrapped between adjoining blade rows which partly determine

the upstream and downstream boundary conditions. In particular,

the upstream (or downstream) velocity as well as the

upstream/downstream flow angles cannot be set as free

parameters.

L
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The prescribed velocity distribution is defined on the pressure

and suction sides of the blade and is given by two separate

functions of the arc lengths S (pressure) and S (suction). The

relative lengths of the two sides or, equivalently, the position

of the stagnation point, can therefore be considered as the

first necessary parameter.

The second parameter is a direct consequence of the fact that,

in general, a flow evolves (in basic approximation) on a

quasi-three-dimensional surface throughout a blade row. Whereas

it is possible to set free two parameters defining the trailing

edge closure ( _ x and _y) for isolated 2-D profiles, it is

obvious that a trailing edge cannot be reasonably defined if

both suction and pressure side trailing edge points are not

located at the same radius (the same m-coordinate in the

standard (m-8) quasi-three-dimensional blade-to-blade

representation). Therefore, the remaining parameter pertaining

to profile closure is the circumferential gap in the e-direction

at the trailing edge.

Finally, like in all turbomachinery problems, the solidity is a

governing parameter, directly related to the circulation around

the profile and the flow turning. It comes as no surprise that

it is the third parameter to be computed by the algorithm since

inlet/outlet angles as well as velocity distributions are given

data for the design method.

Based on these general considerations, many methods were

proposed in the past to deal with the problem of profile or

blade design. It is not the purpose of this paper to review all
these methods and we will instead refer the readers to overall

summaries such as proposed by Sloof [3] or Meauze [4].

A commonly used method for two-dimensional applications was

proposed years ago by Stanitz [5] to determine analytically a

profile from a given velocity distribution. It is still being

used successfully for specific two-dimensional applications at a

reasonably low Mach number. More recent developments by Cedar

and Stow [6] in England and Jacquotte [7] in France allow the

definition of high Mach number profiles within the quasi-three-

dimensional and potential approximations. Finally Meauz@ [8] in

France and Leonard et al. [9] in Belgium have proposed solutions

for the non-viscous quasi-three-dimensional problem solving the

Euler equations that allow for the occurrence of strong shocks
within the flow field.

In the following paragraphs, we will discuss the recent

developments in France that concern both the potential design

method by Jacquotte [7] and the Euler method by Meauz@ [8].

3. FINITE ELEMENT INVERSE METHOD FOR POTENTIAL FLOW [7]

L

A thorough description of the method is given in [7] and

[9]. We will therefore only give here a general outline while

concentrating on concepts and applications.

The method was developed by Jacquotte in 1989. It makes use of

the concept introduced in the previous paragraph pertaining to
the constraints that must be taken into account in order to

arrive at a solution.
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F
1 3.1 Basic assumptions

Three very basic approximations are retained:

a) the flow is inviscid;

b) it is considered quasi-three-dimensional and

computed on stream surfaces in the computational

space (m,_), where m is the arc length of the

meridian line defining the stream surface, and @ is

the polar angle around the axis 0z. It is

therefore assumed that the characteristics of the

through-flow are known and given by a function r

(z) defining a stream surface and the stream tube

thickness b(z) ;

c) third, the calculation is carried out within the

potential flow approximation. Even though the

entropy production through shocks cannot be taken

into account, such a model is still valid for

compressible transonic flows where strong shocks do
not occur i.e., for relative Mach numbers that do

not exceed 1.3 or 1.4. The advantage of using such

a potential flow approach is to be found in the

small CPU times necessary to obtain solutions.

This turns out as a very strong point for a design
method which can therefore be used on an

interactive basis.

3.2 Computational domain and boundary conditions

In order to take advantage of the periodicity of the

problem, the computation is of course restricted to a

blade-to-blade channel. The profile is prolonged by a

pseudo-wake, without lift and with a constant angular

thickness equal to the trailing edge gap.

A C-topology is used to describe the computational

domain since it is well adapted to profiles with

relatively thick leading edges.

L

Upstream and downstream conditions are obtained from

any standard through-flow computation; the upstream

flow is prescribed via inlet angle and inlet relative

Mach number while the downstream flow is defined only

via the exit angle.

The other exit quantities are naturally obtained

through the continuity equation. These boundary

conditions are taken far enough upstream and
downstream so that the flow can be considered as

uniform.

The method can operate both in direct and inverse mode

depending on the kind of boundary conditions which are

applied on the profile: whereas a Neumann condition

corresponding to a zero normal velocity is usually

applied in direct calculations, a Dirichlet condition

is imposed in the inverse method. This condition

corresponds to the fact that the tangentia_ velocity i
(to the profile) must be eqlal to a given W .
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3.3 Profile modification

The goal here is to find the shape which satisfies
both constraints:

a) zero normal velocity

b) tangential velocity equal to a given W °.

The solution of the inverse problem leads to a _low
that follows the prescribed tangential velocity W on

the profile but does not necessarily satisfy the zero

normal velocity condition. The non-zero normal

velocity obtained from the algorithm is used to modify

the profile via a transpiration model : the

displacement of the blade surface is accounted for by

injection of fluid through the original blade surface
such that the new surface becomes a stream surface

[6]. The displacement normal to the profile is then

obtained simply by expressing the mass conservation

between two elements of length ds on the profile (see

figure i).

3.4 Inverse design algorithm

The inverse method consists therefore of a sequence of

the following three-step iterations:

a) computation of the potential on the profile by

integration of the prescribed velocity;

b) computation of the potential in the domain by

solution of the continuity equation with a

Dirichlet boundary condition on the profile;

c) computation of the normal displacement of the
blade surface as described above and modification

of the profile.

While the first and third steps are simple

one-dimensional integrations, the second step

corresponds to the resolution of a two-dimensional,

second order, non linear partial differential

equation. The numerical method used to solve this

equation is a finite-element method developed by

Bredif [I0] which will not be described here. Tran-

sonic flows can be handled by using a density upwind-

ing also presented in [i0].

3.5 Numerical results for turbomachinery applications

L

Starting from an initial profile, three modifications

are generally needed in order to obtain good agreement

between the prescribed velocity distribution and the

one corresponding to the computed profile. The

inverse computation is altomatically followed by a

direct calculation only to verify the convergence of

the procedure. With a i0 x 117 point C-grid (used in

most applications) the total computing time is about

15s on an IBM 3090 computer.
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Three examples are presented: one for a highly loaded
compressor rotor hub section, one for the root
section of a strongly quasi-three-dimensional turbine
nozzle and the last one corresponding to a case where
the robustness of the method is demonstrated.

Compressor rotor hub section

Figure 2 shows the compressor flow path. The stream

tube thickness is obtained from a through-flow

calculation which also provides all the input

parameters :
o inlet Mach number = 0.95

o inlet flow angle = 61.7 °

o outlet flow angle = -2.5 °

The initial geometry came from a previous calculation

and the initial velocity distribution (see figure 3)

was obtained by running the inverse code in its

analysis mode.

The objective for the calculation was to reduce the

peak Mach number on the suction side while retaining

the same solidity and maximum thickness. Figure 3

shows the prescribed velocity distribution vs the

original one as well as the new profile that was
obtained after three successive modifications. The

pitch angle and the thickness distribution have

changed in a substantial manner.

Hub section of a turbine nozzle

The case considered here corresponds to a

strongly quasi-three-dimensional section of a turbine

nozzle with a large stream-wise variation of the

stream tube thickness (outlet to inlet ratio of 1.3).

Designing such blading with a two-dimensional inverse

method results invariably in the occurrence of non-

uniformities in the velocity distributions.

For the present O computation, the inlet and exit flow
angles are 31.4 and -61 ° respectively and the inlet

Mach number is 0.424.

The velocity distribution cn the initial blade and the

target velocity distribution are shown in figure 4

together with the blade profiles. For this case, five

blade modifications were necessary to reach

convergence. The resulting profile remains very
smooth.

Example with a poor initialization

The case in Figure 5 involves large changes in the

profile from the initialization and demonstrates the

robustness of the method. Starting with a geometry

having a relative maximum thickness of 3% and a pitch

L
I
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angle of 25 ° , the code is capable of converging to a

new _rofile with a thickness of 7% and a pitch angle
of 5 . After one iteration, a very large displacement

is observed but nonetheless the calculation remains

stable.

3.6 Extension of the method to the nacelle design

For the design of transonic blades presented up

to now, the complete 3D blade is obtained by

stacking a series of 2D profiles; this procedure

leads to a reasonable blade if the input pressure

(or velocity) distributions vary smoothly, and,

most importantly, if the flow is essentially two

dimensional, in the sense that there is a

preferential direction where little happens in

comparison to the other two directions. A complete

3D calculation using a more accurate model (Euler

or Navier-Stokes) is the definite proof that the

blade obtained by the inverse method possesses the

desired features.

The flow around a commercial aircraft inlet

(nacelle) demonstrates the "essentially 2D"

quality mentioned above and therefore the stacking

procedure can be used about its axis for the design

of this type of geometry. The method has been

extended with the following characteristics:

- basic assumptions :

a & c): same as in 3.1

b) the flow is considered to be axisymmetrical

and the potential equation is written and

discretized in the (z, r) plane.

computational domain and boundary conditions:

a C-topology is used to describe the

computational domain extending around the inlet

from the compressor plane to the downstream

plane behind the nacelle. The four boundaries

and the conditions applied thereon are the

following:

o

o

the inlet profile and its continuation until

the downstream plane; boundary condition:

either no mass flow for the direct

calculation, or Dirichlet condition on the

profile in the inverse mode;

the compressor plane, with a prescribed

velocity distribution (varying Neumann

condition);
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a three-segment boundary, including the axis

(no-mass-flow condition), the upstream plane

(prescribed velocity) and a far field boundary

(no-mass-flow condition);

the downstream plane, with a prescribed

velocity computed from the mass balance

equation between this boundary, the upstream

plane and the compressor plane.

the profile modification is carried out in the

same way as before, using the transpiration

model mentioned in 3.3 [6].

the inverse design algorithm also remains the
same as in 3.4

We will now present a result proving once again the

robustness of the method with respect to

arbitrary initializations. A velocity

repartition (so-called "ideal velocity" on

figures) is computed by direct calculation around

a given profile ("ideal profile") ; this profile

is modified into the "initial profile" by

thickening. The velocity distribution around

this profile is represented in figure 6. It

clearly shows an aspect different from that of

the ideal velocity. The inverse method has been

used in order to recover the ideal profile from

this initialization. The convergence

of the inverse algorithm is monitored by the

decrease of the mass flow across the profile for

each inverse calculation. The normal velocity
distributions for the first three iterations are

shown in Figure 7. After these iterations, the

normal velocity is zero on most of the profile,

except in the neighborhood of the leading edge.
These initial iterations determine therefore the

overall shape of the profile. The final

iterations (there are four of them here) tend to

precisely shape the leading edge of the profile.

The final geometry of the nacelle is compared to

the initial one in Figure 8.

This example has been carried out around the H208

nacelle, (an Aerospatia!e nacelle which was tested

in a windtunnel at ONERA) in a subsonic case (Minf

= 0.30). It required 7 profile modifications

performed in one minute on an Alliant FX2800.
Transonic cases have also been tested and have led

to similar conclusions with a slight increase in
CPU time.

L

To conclude this section, Jt may be stated that the

method presented here is a powerful tool for the

design of turbomachinery blading. It is currently

being applied in the French industry for the

definition of high perfo.-mance turbomachinery.
I
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Parallel research has been going on with the goal of

opening a new field of application in the domain of engine

inlet design for which the methcd has proven suitable.

Improvements are still being worked on especially in

the field of mesh definition for turbine applications.

The method has naturally some limitations. One of

these is the built-in potential approximation which
in fact leads us to the next section devoted to the

transonic inverse and semi-inverse method developed

initially by Meauze at ONERA.

4. TRANSONIC INVERSE AND SEMI-INVERSE METHOD [8]

Whereas the method described above solved the potential

equation, the one under consideration here deals with the

Euler equations which allow for the occurrence of shock
waves within the flow field .

This method was first developed by Meauze in the early

eighties as a follow-up of the transonic blade-to-blade

direct calculation developed at ONERA by Viviand and

Veuillot [ii].
These authors made a valuable contribution to the

resolution of the Euler equations by using time-marching

methods where time is only a computational parameter and

the final asymptotic flow field is obtained as the steady

solution of the equations.

4.1 Overall description and concepts

The basic features of these methods can be

summarized as follows:

- the quasi-three-dimensional Euler equations are

discretized in the physical plane;

- a McCormack type predictor-corrector numerical

formulation is used;

- when strong pressure or velocity gradients occur,

an artificial viscosity is used to smooth out

numerical instabilities ;

- boundary conditions (wall boundary conditions or

inlet/outlet boundary conditions) are treated via

compatibility relations which are derived from the

theory of characteristics.

Using this framework, Meauze developed an inverse

method in which the standard zero normal velocity

boundary condition on the profile canbe completely or

only partly replaced by a static pressure (or

velocity) condition. Whatever the case, the boundary

condition problem is always dealt with via the

compatibility relations. When operating in inverse

mode, the profile and consequently the grid system

must be updated. This can be accomplished either

through reconstruction of the blade surface by using

the flow angle computed at each wall grid point or,

more rigorously, via a trarspiration model like in the

previous method.
L
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4.2 Inverse and semi-inverse methods

4.3

What makes the method especially attractive for the

designers is the fact that not only does it allow the

defining of blading in the transonic regime, but it
can also operate in the semi-inverse mode. This makes

it possible to apply a given boundary condition on one

part of the profile - say a pressure distribution -

while retaining for instance the initial geometry on
another portion of the blade. Localized corrections

of the geometry can therefore be implemented in order

to improve the overall aerodynamics of the blade.

Of course, for such applications, special care must be

taken at the junction between the direct and inverse

calculations. This is especially true when the flow

is locally subsonic; then a smooth transition from the

prescribed to the computed pressure distribution is

required.

On the other hand, for locally supersonic flows, jumps

in static pressures are allowed which would correspond

to crossing shock waves or expansions.

One interesting version of the code allows prescribing

of the pressure distributicn on only one blade surface

- generally the suction surface - while the other

surface is determined from purely geometrical

considerations, such as a thickness distribution.

One may note that, in this case, the cascade solidity

may be chosen in advance since the profile is

automatically closed. However, one drawback is the

lack of control over the velocity distribution on the

surface for which the pressure distribution was not

prescribed. Moreover, two solutions to the problem

can exist. Numerical experiments have demonstrated

that only solutions corresponding to small flow

deflections are stable. Therefore, this method is

really only suitable for cempressor applications.

Numerical results

Three examples will be presented: the first

corresponds to the definition of a high supersonic

blading on the second stage of a rocket turbopump; the

second one is devoted to the design of a high pressure

ratio turbine cascade; finally, the third application

deals with the definition of a supersonic compressor
profile.

These three cases have been selected to give examples

of the various modes of operation of the method and

will demonstrate its versatility.

L I
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The case considered here corresponds to the redesign
of the mean section of the high supersonic rotor of a
rocket turbopump. For this configuration, the direct
calculation on the original blade showed that the
upstream flow was started, i.e., the inlet flow angle
is fixed by the unique incidence phenomenon. An inlet
relative Mach numbe_ of 1.22 was obtained for an
inlet angle of 48.5-. The results of this direct
blade-to-blade calculation are shown in Figure (9a).
Strong shock waves are observed throughout the blade
channel with a strong normal shock on the suction
side.
An attempt was made to improve the situation with the
inverse method operating in its semi-inverse mode.
The pressure distributions were prescribed on the
pressure and suction surfaces but only over part of
the blade. In fact, for this case of supersonic inlet
flow, the goal was to leave the inlet conditions
undisturbed in order to guarantee adequate matching
between the blade rows. The blade entrance region
consists of a straight part on the suction side. The
slope of this straight portion is chosen such as to
obtain the specified unique incidence computed with
the original blade. The pressure distribution is then
prescribed downstream of this entrance region.
Figure (10a) shows the selected distributions; on
the pressure side, the flow becomes subsonic and the
pressure gradient is chosen so as not to cause
boundary layer separation. A smooth pressure
distribution is prescribed on the suction side where
the impingement of the shock has been deleted.
The resulting pressure field is presented in
Figure (10b). An oblique shock is observed at the
leading edge on the pressure side. On the suction
side, a sharp change in the slope of the surface is
observed which compensates for the impinging shock.
The calculated relative inlet Magh number is 1.21 and
the computed inlet angle 48..3 u. These are in good
agreement with the results of the direct
blade-to-blade calculation on the original blade.
The result of the direct blade-to-blade calculation on
the redesigned rotor profile is shown on Figure ii.
Good agreement is likewise observed between the
inverse and direct calculations.

Hiqh pressure ratio turbine cascade

Here again, the code is used in its standard semi-

inverse mode for which the pressure distribution

was prescribed on both blade surfaces but only

downstream of certain points on the surfaces.
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Upstream of these points, the initial geometry of the

blade is retained and the method operates as a direct

blade-to-blade computation. Figure (12a) shows, as

broken lines, the initial pressure distributions with

suction side non-uniformities. Also presented are the

prescribed pressure distributions shown in solid

lines. The blade shapes corresponding to these

pressure distributions are shown in Figure (12b).

Again, the solid line corresponds to the modified

blade. Note that the solidity has changed, with a

slight increase of the pitch.

Supersonic compressor cascade

This case is a typical example of the method

described above where the blade is defined using a

mixed type of aerodynamic and geometrical data. Here,

the method is applied to the design of a supersonic
compressor profile with an inlet Mach number of 1.2.

Figure(13a) presents the initial pressure distribution

where a shock at a peak Mach number of 1.6 occurs on

the suction side near the trailing edge causing an

increase in the loss and probable separation. The new

blade is now obtained by tailoring the suction side

pressure distribution so as not to exceed a peak Mach
number of i. 42. The initial blade thickness

distribution is retained.

Figure (13b) shows the new profile compared to the

initial one. As can be seen, the difference between

the two geometries is very small (which, by the way,

ought to make us wonder what really happens in the

machine when all manufacturing deviations have been

taken into account).

The newly computed pressure distribution on the

pressure side is also presented in Figure (13a). It

exhibits a rather irregular shape especially in the

trailing edge region. This is due to the evolutions

of the pressure side cur_-ature in this rear part of

the blade which necessarily "follow" those of the
suction side since the thickness distribution is

prescribed.

This is one of the drawbacks of the method although a

local correction of the blade on the pressure side can

usually improve the situation without deteriorating
the suction side pressure distribution.

4.4 Current developments

As stated earlier, this inverse Euler code must really

be considered as a by-product of the direct

blade-to-blade calculation. As a consequence, a major

overhaul of the code is under way which reflects the

improvement brought to the direct flow computation.

i
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Most of these improvements have been obtained on the

mesh itself where the standard H-grid has been

replaced by an H-C or H-C-H one with a multi-domain

approach (compatibility relations are used at the

boundaries between the domains). The improvement is

especially to be found in turbine applications where

round leading edges can be properly modelled

(see Figure 14).

In a parallel effort, the algorithm has been modified

in such a way that the inverse mode and the profile

modification procedures are now only applied after

convergence has been achieved on a given intermediate

geometry. Although this brings about some

penalization of the computing time, this approach
gives better quality solutions.

CONCLUS ION

Two quasi-three-dimensional inverse methods have been described

above. Taken as a whole, they allow the defining of

turbomachinery blade profiles throughout the entire Mach number

range of interest for jet engine (even rocket engine) rotating

components. Examples have been presented for compressor and
turbine profile designs.

Both methods are currently being used throughout the French

industry. A parallel research effort is still under way to

improve them and extend their fields of application. The next

step will certainly include coupling with a boundary layer

calculation in order to better predict viscous effects.

It is obvious, however, that even such improved methods will

have their limitations. The next significant step in

turbomachinery design will have to be found in optimization

techniques similar to the ones developed for external

aerodynamics. Although some progress has been observed in this

domain in the recent past, it is still widely believed that a

breakthrough in the field of fundamental mathematical analysis

will be required in order to formulate this complex multi-param-
eter problem.
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ABSTRACT
A brief review of advances in the inverse design and optimization theory in the

following engineering fields in China is presented: I) Turbomachine aerodynamic inverse

desigm including mainlyz (1) two original approaches---ima9e-space approach and varia-

tional approach , (2) improved mean-streamline (stream surface) method, (3) optimization
theory based on optimal control. II) Other angineerin9 fields: inverse problem of heat
conduction, free-surface flow, variational cogeneration of optimal 9rid and flow field,

optimal meshin9 theory of 9ears.

1. INTRODUCTION

Up to now, most(over 95_) of the technical literature deals only with the direct
(anatysis) problem due to possibly the fact that the inverse(desi9n) probtem(findin9 the

unknown boundary shape) is, in 9enera[, much more difficult to formulate as welt as
to solve than the direct one, thou9h the inverse problem is more important for , and di-

rectly related to, practical design. As a result, for instance, almost all turbomachine

bindings are still desi9ned by repeated use of direct problem methods in a cut-and-try
manner, which is of course not only inconvenient and time-consuxin9, but also incapable

of providing very 9ood results. So in the 1950's in China we have tried to apply the mean-
streamline method for inverse problem of Wu • Brown[30] to cascade desi9n and some impro-

vements of this method were su99ested[2]. In the 1960's a new image-plane approach to the

inverse problem was proposed [5]. It was realized, however, that also the inverse problem

can not be successfully used for practical blade design, because it often tends to blade

confi9urations that are either unfeasible from consideration of stress, vibration, coo-
[in9 and technology or even unreaiizabie(e.9. 9loin9 profiles unclosed or with ne-

9ative thickness). Therefore the traditional direct and inverse problems can not keep
up with the development of modern turboxachinery(TN) and it was su9gested in Refs.[18,56]

to extend the scope of aerodynamic problems and reclassify them into four categories: di-

rect, inverse, hybrid and optimization probiems. Then the ima9e-PtLne approach was ex-

tended to hybrid problem in Ref$.[6,56], and another new approach to inverse and hy-

brid problems based on variational principles (VPs) was aiso su99ested in Refs. [18, 21].
Since then, a tot of variants of the ima9e-ptane approach, the variational approach and
the mean-streamline method have been developed in China and extended to 3-D case.

The Chinese research on the optimization problem of bindings started with the pro-

bten of optimal radial distribution of flow parameters in TM with ton9 twisted blades in
1963152]. Later, advances in this area are characterized and facilitated considerably by

the introduction of modern optimal control theory.



146

Third Inmmational Con.fe.r_nceon Inverse Design Concepts and Optimmarion in Engine_nng Sciences
CICIDES-FID. Editor: G.S. Dulik_vich. Washington D.C.. October 23-2__. ]99]

II. RECLASSIFICATION OF ENGINEERING PROBLEI_ SETTING

Generally speaking, any problem of en9ineerin9 sciences can be posed in different

ways, resulting in four problem categoriesz direct, inverse, hybrid and optimization pro-

blems. Specifically, for the aerodynHic problem of blade cascades these problems are

defined conceptually in Table I. The aerodynamic problem for S2-stream surface can be
classified similarly as shown in Table II.

The hybrid problem is a unification as well as a generalization of the direct and
inverse problems, encompasses a wide variety of types(see Table III for cascades on

arbitrary strensheet of revolution) and hence is very flexible and capable of meeting

various design requirements. It provides design engineers with a series of new rational

versatile ways for blade design. In additio_ the inverse and hybrid problems also cons-
titute an important ingredient of the optimization problem.

Table I. Problem Classification of Cascade Flow

Given To be soughtproblem

1 I Direct (D)

2 ] Inverse(I)
------4 ..............

3 ] Hybrid (H)

L
4 ] Optimiza-

I lion (Opt)

cascade 9eometry velocity field

surface velocity distribution cascade 9eometry

'partly 9eometric conditions' b the remaindin9 unknown
'partly flow condition' 9eometry • flow field

l)objective functional optimal cascade 9eometry

2)design inequatity constraints • flow field

TabLe II. Problem CLassification of S 2 -FLow

Given

problem

Direct

Inverse

complete

semi-

complete

on S2

Sh ap e

V_r

on hub & cas in9

9eoe, etry

pressure distribution

pressure distribution

semi- 9eometry

Hybrid Shape or V_r 'partly 9eometry'+'partly pressure
distribution'

Optimization I) objective function ,

2) inequality design constraints
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Table III. Hybrid Problem Types of Cascades

Types

HA

HB

Hc

H D

Given conditions

9eometric

part of airfoil form

airfoil thickness
distribution

airfoil thickness
distribution

airfoil thickness
distribution

aerodynamic

velocity distribution atom9 the
remaindin9 part of profile contour

blade toadin9 distribution

(Pp-Ps)

velocity distribution aton9 the
suction surface

distribution of velocity difference

(Ws-W_)

Since the hybrid problem of fully 3-D flow may have a wide variety of types,
dependin9 on the manner in which the boundary conditions (B.C.) on the blade surface are
combined with those on the annuctar walls, it is necessary to employ some properly
defined compound symbols to designate them as proposed in Refs. [46, 47]. For instance, the

symbol (I×H A) desi9nates such a hybrid problem type in which an inverse problem is posed
on the blade surface, while a H_-probLem is posed on the annular walis(Fig, la). ]n other
words, the symbol before 'X' characterizes the problem type on the blade surface, while
the symbol behind 'X'---that on the annular walls, it is easy to see that the scope of
possible hybrid problem types can be made even much broader by posin9 different problem
types on different portions of the blade(and/or annular) walls (Fi9.1b).

III. INVERSE • HYBRIDPROBLEMSOF BLADE-TO-BLADEFLOW IN TURBOMACHINES

The research on inverse and hybrid problems In China has been 9oin9 basicatty aton9
the foltowin9 three liness (i) universal approach based on image-plane concept; (ii) uni-
fied approach based on variational principles (VPs) and the related finite element method
(FEM); (iii) improvement of the mean-streamline method and of other well-known methods.

1) Universal Approach Based on lma9e-Ptane Concept

Two different image planes _and _ have been introduced,
1-1. Methods based on image-plane _.

The first universal ima9e-plue method for solving the inverse problem of 2-D com-
pressible cascade flow was su99ested by Liu In 1964 [5] and extended to cascades on
arbitrary streusheet of revolution by Liu • Tao in 1967 [6] and to hybrid problem HA by
Liu s Tan in 198116]. The main difficulty is the treatment of unknown boundary(blade
surface) and was successfully overcome by introducin9 a nonorthogonaL curvilinear(strsam-

line) coordinate system (von-Mises coordinates) defined by (Fi9.2, where _ should be rep-
laced by _)

7 (LS o)

where the streu function _ is defined by

(1)
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a v - TrfaA,

It is expedient to regard Eq.(1) as a mapping, which transforms the original irregu-

lar periodic ftow domain with some unknown boundary(AB in HA-problem, Fig. 2a) on the
physicaL stream surface into a simpLe rectanguLar one with fully known boundary in the
image plane (Fig. 2b). Moreover, the folLowing four aLternative formulations were derived
in Ref. [5,6]:

i) first-order partial differentiaL equation (PDE) system
it) second-order PDE

iii) inte9ro-differential equation

iv) integral equation system,

of which only the integro-differential for-utation for honentropic fLow is given here for
reference [6]:

where (_;c)

.-o ,4 4 ) '
-_o

(4)

< l fA2a_))m1 I-

-2a)B fF . _ o_ d_

(aa)

Rere ,/J(=W/_o) =d Au(=_r,_ao) are dimensionless relative velocity and bLade speed

respectively; m:(X-l)'J; me---reference speed of sound; _---rotor tn9ular speed; _C--

the contour abcda of a finite area E,_ (Fig._b).

A HA-and an inverse problems of a cascade on a general streamsurface of revoLution
have been soLved by this method by then et at. in Ref.[7].

This method was then improved considerabLy by Liu [8] via introducing a new moment
function _ defined by

The moment function has some special features, for instancez (i) its increment

around any closed contour enclosing an airfoil A_is just equal to the aerodynamic mo-

ment M_ exerted on airfoil.,

zl = = f'-Atr

This is just a 9eneratization of the weLL-known Kutta's Lift theorem for 2-D fLow,

showing that M_ is proportional to both absoLute circulation around airfoiL [" and fLow
rate through an interblade channel a_ (it) the pressure p can be computed directly from

Eq.(5), resulting in two advantages: first, no density ambiguity[S0] appears; second, for
the inverse problem the B.C.(i.e. the distribution of _ ) on the airfoiL contour is of

the Dirichiet's type and hence easy to deaL with. Also in this case the four alternative

formuLations mentioned above are possibLe, of which onLy the second-order PDE formuLation
is given be Low:
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where ^,B,C,D,E are functions of Nach number, _, q_" _d _(Fi9.2); F is a function of the

9radients of entropy and rothalpy. In Ref. [8] an inverse problem of a cascade on a
conical streamsurface taken from Ref. [18] was solved and the result is 9iven in Fi9.3.

Later, a number of methods usin9 this image plane _r have been also published in

Refs[9-12], differin9 from one another, however, by different choice between the four
abovelentioned formulations and by different iterative strategies. Thus, in contrast to

Refs.[5,5], Shen & Ma [9] solved the HA -and Hc-problems of 2-D transonic cascade flow
by emp[oyin9 the Ist-order PDE formulation and Jameson's rotated difference scheme, while

Chen & Zhang[10], usin9 the second-order PDE formulation for the dependent variable_(_,_/),

presented a numerical method for solvin9 direct, inverse and hybrid HA -problems atom9
with three numerical inverse problem e×amptes, of which the one for a tandem cascade is

9iven in Fi9.4. Some difference between the calculated and original profiles might be at-
tributed to the use of the measured velocity distribution as input for the calculation.

This method has been modified by Sun et al. in Ref.[ll] by usin9 a boundary-fitted coor-

dinate _ (see Eq.(9)) instead of _. The numerical result of a supercritical cascade to-
gether with its modified desi9n is shown in Fi9s.5 • 6. In Ref. [12] a method similar to

Ref.[10] for Hc- • I-problems was presented for rotational flow, and a method for remov-
ing the density ambiguity is also 9iven. In addition, a rational cascade desi9n proce-

dure conslstin9 of successive use of H C-and I-problems is proposed.

I-2. Nethods based on image-plane _.
All methods usin9 image-plane _ suffer from the shortcomin9 that sin9utarities

appear in the vicinity of blunt leadin9 and trailin9 ed9es due to local multivaluedness

of the mapping Eq.(1). To circumvent this difficulty, another method for hybrid problems

was su99ested by Liu [13], where a new ima9e-plane _ defined by (Fi9.2)

(9)

was introduced, where _
constants. Also in thls

the integro-differential formulation is 9iven here for reference (Fig. 2b).

and _ (the _-values on suction • pressure sides) are 9iven
case four alternative formulations can be derived, but only

f.)

-- T-

(I0)

(11)

'-
(12)

where 197 is the slope of the _-coordinate line; H))-- _ _) is the scale factor of

the coordinate _ ; _=_oj_-_ is the an9ular width of the blade channel, lie can see that
this new Imafe-plane method is particularly advanta9eous for solvin9 those hybrid prob-
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lens with 9iven airfoil thickness (and hence H_7 is also known).
Other methods based on l_-isa9e plane, usin9, however, the followin9 second-order

PDE formulation, have been presented by Chen et al. [14, 15] and Gel16]:

ArTrS_ .A_,,. t- '  13>

where AI,Az, A3, A#,Asare functions of /3 and the metric tensor 922, 923; gl depends on the
9radients of entropy and rothalpy, velocity,_o, 6- and viscous forces. In Ref. [14] the HA-
problem of potential flow is solved and one of the numerical examples is 9lynn in Fi9.7.
The figures 8 • 9 taken from the viscous inverse problem solutions of Refs. [15] s, [16]
respectively show that for the same inlet and outlet flow angles the airfoil in viscous
flow is ,,ore stron9ly curved than that in inviscid flow.

2) Unified Approach Based on Variational Principles

Basically there have been developed two completely different variational approaches,
followin9 a systematic way su99ested by Liu[17].
2-I. Approach based on VPs in the image plane _V'(Fig. 2)

In Ref.[18] Liu established two families of VPs and 9eneralized VPs in terms of the

moment function f_ and an9utar function respectively for the HA- and H_-probtems in the
image plane _f, which were modified by Liu a Yao to 9ive the VPs for the Hcproblem in
Ref.[lq]. Only one of these VPs is 9iven below:

_ (.ft.) u +2m [_;t k_F 5-"_7?.o_]× m ]J-It F--t-'-°_?---_-t-A d_.d_-i-/.., a (14)

where the boundary integral term L_takes different form for different problem types.
Based on these VPs involvingfL some finite element (FE) solutions to H_-and He-problems
have been presented in Ref. [20] by Yao et al., from which Figs. 10 _ 11 for a cascade on a
conical stream surface [75] are taken.
2-2. Approach based on VPs with variable domain.

Nakin9 use of the functional variation with variable domain, Liu was able to

establish three families of VPs and 9eneralized VPs for RA-, Hs-and H_-problems in terms
of the potential and stream functions _a_/for potential and rotational flows in Refs.
[21,22] and extended them to transonic flow with shocks in Ref.[24]. Moreover, variable-
domain VPs usin9 Clebsch variables have been also developed for 2-D transonic rotational
channel flow by Liu[25].

Numerical solutions to KA-and Hcproblems based on VPs of Refs.[21,22] have been
obtained by Yah • Liu[22,23] by means of a new finite element with self-adjustin9 nodes
for numerical realization of the functional variation with variable dumain(Figs. 12 a 13).

Perhaps a very attractive merit of this variable-domain approach is that it can be
straightforwardly extended to fully 3-D flow.

3) The Mean-Streamline Method (MSLM).

This method originally su99ested by _u a Brown[30] was improved in many aspects in
China. A survey of this development before Ig84 has been presented by Call2]. Recent
research includes Cai's paper [3] and Wang's paper [4].

4) Miscellaneous Approaches.

Several known approaches to inverse desi9n of cascades were improved or modified in
China.

4-1. Iterative method based on direct problem solver.

Such a method is suggested by _an9 in Ref.[2_] to solve inverse and various hybrid
probtems(includin9 Hk • H_) and extended to viscous flow in Ref. [27] by incorporatin9 a
boundary layer solver of integral type. Based on this method, Wan9 et at. proposed a
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quasi-3-D design procedure for impellers[28,29].

4-2. Time-dependent method.

Startin9 from the inte9ral form of aerodynamic equations, a finite--volume method for

inverse cascade problem is 9iven by Zhou _,Zhu[31].

4-3. liodograph method.

It was improved in the transonic re9ion by incorporatin9 some analytical nozzle so-

lutions and 9eneratized to cascade flow alert9 9eneraI streamsheet of revolution indepen-

dently by Chen[32] and Yao[33].

IV. INVERSE _ HYBRID PROBLEMS OF S2-FLOW IN TURBOMACHINES

Similarly to St-flow, the iu9e-plane approach and the VP-based approach mentioned

above can be applied to S2-ftow as well.

I) Unified VP-Based Approach.

Startin9 from the basic equations of Wu's S2-ftow modet[l,79J, first complete VPs

and 9eneratized VPs for the semi-inverse problem were established by Liu[34] and the

correspondin9 FE solutions were obtained by Qin et at. [35]. Inverse and hybrid probLems

of S2-fLow were formulated in a unified manner by VPs with variable domain by Liu[36] and

by VPs in an ima9e-ptane _f by Cai • Liu[37], which have been 9eneratized to flow of

pure substance by Xu[HBl. In Ref. [39] VPs for hybrid problems of axisymetric channel

fLow were derived by Tao _ Liu.

2) UniversiaL Image-Plane Approach.

Usin9 an ima9e plane _ and 9iven a distribution of circulation V_F on S2-surface,
fe presented a method for solvin9 the complete inverse problem and a hybrid problem(with

unknown hub(or casin9) walt, see Table II), thereby a second-order PDE for F(_I_) was
derived and solved [40].

V. INVERSE _ HYBRID PROBLEMS OF FULLY 3-D ROTOR-FLOW

For these problems three approaches have been developed in China.

I) Method of Mean-Stream Surface.

It was originally su99ested by Wu in 1952[1] by a Taytor-serise expansion of flow

parameters in the azimuthal direction as an extension of NSLN[30, 2]. It was improved,

numerically elaborated and applied to desi9n by Zhao et at. in Refs.[41, 42], where
an annular constraint condition is set up, which must be satisfied to ensure that the

hub/casin9 walls are axisynmetric.

2) UniversaL Ima9e-Space Approach.

In Ref.[43] Liu devetoped a universal image-space theory of hybrid problems for
fuLly 3-D potential flow, which is a 9eneralization of the image-plane approach of

Ref. [13]. Apptyin9 tensor calculus and Stokes theorem, the basic flow equations are trans-
formed into the followin9 inte9ro-differentiat equation system for the stream functions

•t_"I and _/;2 in the ima9e space _2_3 (Fi9.14b):

}

and Eq.(5), where V i are the contravariant components of the vetocityA'ln a body-fitted
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nonorthogona[ curvilinear coordinate system _i(Fig. 16a). Similarly, a correspondin9
potential function formulation by integro-differentiat equations of this theory has been
also presented by Liu et at. [44].

A similar method for solving 3-D hybrid problems was put forth by Chen et at.[45],
using, however, a second-order PDE formulation:

This equation was solved numerically by the method AF2, the multi9rid technique _d
the artificial density in the transonic region. To greatly simplify the numerical
solutiom the inverse problem is modified in such a way that the physical contravariant
velocity components_l(assuming that _Lcoordinate is the stream like line) rather than
the fully velocity _ is prescribed on the blade surface. An axial compressor rotor was
redesigned and improved by this method as shown in Figs. 15 b 16.

3) Unified Variable-Domain Variational Approach
The variable-domain variational approach[21, 22] has been extended by Liu to hybrid

problems for fully 3-D incompressible[45], compressible[47] and transonic[48] flows in
rotors. Only one of the VPs is 9iven below for reference.

-av + LF , (18)
¢V)

where the boundary inte9rat tern L takes different form for different problem type. Note
that the variable-domain variation of J2 should be taken at the unknown boundaries A_"
(blade surface)and A2d (free trailing vortex sheet). Corresponding numerical solutions to
incompressibLe(HA×D)-probtem of Nizuki's centrifugal compressor[51] and to compressible
([Hc+D]XD)-problem of an axial turbine stator have been obtained by a novel FE with self-
adjusting nodes in Refs.[49] and [50] respectively and are shown partly in Fi9s.17 _, 18.

VI. OPTIMIZATIONOF AERODYNAMICDESIGN OF BLADING.

I) Optimization of Sz-Ftow.
A basic and very important problem in this context is the optimal flow type(i.e.

optimal radial distribution of flow) in btadings. This problem was first studided by m
variational method by Liu[52] and later by Xue[53] and Lu[54]. Recently, this problem was
treated by an optimal control method by Gu a Niao[55], so that various inequality desiOn
constraints can be accounted for.

2) Optimization of 2-D Cascades.
Theory of optimization of cascade profile shape can be founded on the basis of

of the fottowin9 flow models.
i) Simplified model(LeFotb Citavy)

one

I Suction side of 1 +a single airfoit

Boundary layer I

Inviscid external flow 1
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ii) Refined mode[ (Liu[51-$9])

Eascade J +

t nviscid core flow

÷

Perhaps, a third, most accurate flow model based on Navier-Stokes equations incorporatin9
some turbulence models should be also tried.

Two possible mathematical models(formulations) can be used here, namely: a) mathema-
ticat programin9 problem b) optimal control problem.
2-1. Optimization based on the simplified flow model.

The problem of detersinin9 the optimal velocity distribution mien9 the suction side
was formulated as an optimal control problem with some inequality desi9n constraints
(e.9. separation-free, maximum or minimum velocity limit, etc) and solved by a heuristic
grapho-anatyticat method by Liu[56,63]. This approach is followed by Wang[60] in the
design of an axial ventilator. Having calculated the optimal velocity distribution aton9
suction side and specified a reasonable airfoil thickness distributio_ a Hc-problem was
solved by the image-plane method 9iven in Refs. [5,6] to yield the optimal airfoil shape.
A similar method, with some modifications, for optimizin9 2-D compressor cascade was

presented by Hua b Chen[6l], where a method for estimatin9 the airfoil circulation was
9iven and the optimal airfoil shape was obtained by MSL_[20,30].

The optimal vetocity distribution along the suction side on a 9enerat streamsheet of
revolution was obtained by Zou[62], using Nager's transformation of turbulent boundary

layer.
In Ref.[63] some generalizations of the LeFotl's optimization theory of blades were

given by Liu a Wu to accommodate different objective functionals with more 9eneral
constraints.
2-2. Optimization based on refined model.

In Refs.[S7,59] Liu su99ested a new theory of optimal 2-D cascades based on the
above-mentioned refined flow modeL, in which this problem has been formulated as an

optimal control problem with multiple inequality design constraints on control-and phase-
spaces. Two typical optimal control problems were considered, cascade with minimal tosses
and cascade with maximal loading (circulation), and a duality theorm between then has
been proved theoretically, so that it is sufficient to study only the cascade with minimal
losses. This theory has been generalized to 2-V compressible flow and to a 3-0 axial-flow
rotor by Liu[58]. The essential feature of this theory ties in its capabitity of handtin9
a wide variety of practical design constraints(from stress, vibrational, cooling and te-
chnological considerations) in a unified manner so as to make the optimal solution surety
feasible and suitable for use in practice.
2-3. Local optimization of transonic cascades

Jiung et at. suQgested a numerical method for weakening shocks in transonic cascades

by local optimization of airfoil shape[64]. The airfoil contour segment near the shock is
represented by a cubic parabola with free coefficients a_,aa, a3, a4. Then the Mach number
just before the shock Hs is minimized with respect to a i.

3) Optimal Design of Diffusers.
The optimal design of 2-D diffusers was considered by Gu _ Ji[66] using optimal



154

Thud Inmrna_onal Coherence on _verse Design Concepm and Opumizanon in Engineenng Sciences
OCIDES-IID. Editor: G.S. Dulikravich. Washington D.C.L October 23-2L 1991.

control for searching optimal wall shape that maximizes the pressure recovery of diffuser.

A more general optimization probten of diffuser was put forth by Liu et at. in Ref.[65],
where not only the watt shape but also the watt suction distribution that maximize the

pressure recovery without boundary layer separation are sought by optimat control method.
An 1-D optimal design method for turbine annular axiat-radiat exhaust diffuser was

presented by Ling & Jin[67] based on an approximate toss model. The pressure recovery

coefficient of an optimal diffuser desi9ned in this way has been shown higher than the
conventionat one by 7_ by expdnent.

4) Other Optimization Problems.

Making use of the Parson's number and the concept of optimal reaction degree, Yao

presented a method for optimizing aerothermodynMic parameters in one-and multi-stage
steu turbine design. Some 9uidetines for optimal design of tong twisted btades are 9ivan.

In Ref. [69], based on the diffusion factor and equivalent diffusion ratio, the

optimal solidity probtem of 2-D compressor cascades is formulated by Liu as nonlinear

pro9ruin9 problems, whose analytical solution in form of simple formulae is very

convenient for practical use.

A simple approximate method for determining the optimat relative azimuthal position
of two blade rows in tandem cascades is su99ested by Wu a Fen9[7O] using a simple total
pressure toss model.

VII. MISCELLANEOUS INVERSE, HYBRID a OPTIMIZATION PROBLEMS IN ENGINEERING SCIENCES

In Ref. [71] the finite element method is generalized by Liu • Zhao via variabte-

domain variations in such a way that the nodes are movable. It allows both optimal 9rid

and flow field to be cogenrated simultaneously and naturally using directly the VPs of
aerodynamic problems.

The inverse problem of heat conduction with unknown boundary was handled by Liu
Zhan9172] using Ritz's and FEM based on Variable-domain VI's. An alternative method for

solving this problem was sug9ested by Liu[73] by introducing an image plane T_f'(T and
_stand for tramforned temperature and heat siren function respectively). An interest-

ing invariance property of the nonlinear inverse problem solution with respect to varia-

ble conductivity is pointed out. An example is solved by FEM based on a pair of comple-
mentary extremum principles.

The inverse and hybrid problems of free surface flow under 9rarity over a dam are

posed and handled by Liu via VPs in an image-plane _ [74] and VPs with variable domain
in the physical planet75,76].

In Ref. [77] Liu su99ested a novel problem in 9ear theory---optimal meshing(i.e.

optimal tooth profile) of spur 9ears and its variational theory. An analytical solution
to the optimal meshin9 with minimal friction losses has been obtained and it has been

revealed that the cyctoidat 9earing with radial tooth profite on the lower half tooth

height used widely in watches and clocks can be regarded approximately as a practical
9earing with maximal efficiency.

VIII. CONCLUDING REMARKS

Research on inverse, hybrid and optimization problems is of 9reat theoretical as
well as practical importance in en9ineerin9 sciences. To our experiences, the three new

approaches(image-space approach and VP-based approach, especially its variabte-domain

variational variat, for inverse and hybrid problems; optimization approach based on
optimal control) suggested and intensively developed in China in the last two decades

have proved to be efficient tools for inverse design and optimization not only in turbo-

machinery aerodynamics in particular but also in engineerin9 sciences in 9enerat and

deserve further development and application to practice. Design engineers and industry

wilt surety benefit a tot from them, if a coaptete set of computer codes based on these
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approaches can be finished and organized into a computerized automated interactive
design system(something Like that of Ref. [81].

REFERENCES

[1] Wu, Chung-Hu_ A general theory of 3-D flow in subsonic and supersonic tarbomachines
of axiaL-, radiaL- and mixed-flow types, NACA TN 2604(1952)

[2] Cai,R., A summary of developments of the mean-streamLine method in Chin_ ASME J.
Engrg for GT _ Power, 106(1984) pp.300-305

[3] Cai, R., An en0ineering method for solving axial flow cascade inverse problem, ASME
paper 87-GT-147(1987)

[4] Wang, Zhengming, A method for aerodynamic design of blades in quasi-3D calculation
of turbomachines, ASMEJ. of Turbomachinery, 110, (1988) pp.181-186

[5] Li_Gao-Lian, A universal computer method for solving inverse cascade flow problem
with prescribed velocity distribution (in Chinese), Research Report, Institute of
Mechanics of Chinese Academy of Sciences, BelYing, China, 1964.

[6] Li_Gao-Lian • Tao, Chen9, A universal image-plane method for inverse _ hybrid
problems of compressible cascade flow on arbitrary streamsheet of revolution:Part
I--Theory, Numerical Methods in Laminar _ TurbuLent Flow, Vot. 6, C. Taylor et at.
(ed.), Pineridge Press, U.K., 1989, pp. 1343-1354. (or_ Power Engr9 (China), No. 2
(1981) pp. 20-29).

[7] Chen, Kan91in et al.,A universal image-pLane method for inverse and hybrid problems
of compressible cascade flow on arbitrary streumsheet of revolution: Part ll--
Num.Sotution. ibid, pp.1355-1366.

[8] Li_Gao-Lian _ Zhang, Dao-Fang, The moment function formulation of inverse • hybrid
problems for bLade-to-bLade compressible viscous flow along axisymmetric streumsheet.
Numerical Methods in Laminar _ Turbulent FLow, Vo1.6, C. Taytor et al.(ed.) Pineridge

Press, U.K.,1989.pp. 1289-1300. (or_Liu, Oao-Lian, Chinese J. of Engrg Thermophys. 3
(1982) pp. 136-144 (in Chinese)}

[9] Shen, N.Y. • Ma, Y.L., Direct-inverse problem of 2-D cascades in transonic flow (in
Chinese), Acta Mechanica Sinic_ 15,1 (1983) pp.l-6.

[10] Chen, Naixing, Zhang Fengxian, A generalized numerical method for solving direct,
inverse and hybrid problems of blade cascade flow by using streamline-coordinate
equation, AS'MEPaper 87-GT-29(1987).

[11] Sun, X.Y. et at., A unified method for solving aerodynamic cascade design problems on
an arbitrary surface of revolution, AS_ Paper 8B-GT-IIS(1988)

[12] Ge, Manchu. et at., A method for solving transonic St- Stream surface with a stream
function equation(in Chinese), Chinese J. Engrg Thermophys. 8_.(1987) pp.31-38.

[13] Li_ Gao-Lian,A new approach to some hybrid aerodynamic problems of airfoil cascades
on a general streamsheet of revolution(in Chinese), Chinese J.Engrg Thermophysics. _.
1(1984) pp.27-32.

[14] Chen, Nai×ing • Li Weihon9, A new method for solving aerodynamic hybrid problem of
profile cascade on S stream surface of revolution by employing stream function
equation expressed with non-orthogonat coordinate system, lnt't J. Num. Methods in

Engrg, 22._..,(1986) pp.456-479.
[15] Chert, Nai×ing et at., A inverse problem solution method for the blade cascade flow

on streamsurface of revolution, ASMEPaper 86-GT-159(1986)
[16] Oe, Manchu et at., A method for solving subsonic and transonic viscous inverse pro-

blem of cascade with stream function equations(in Chinese), Chinese J. Engrg Thermo-

phys, 8(1987) pp.243-245.
[17] Li_ Gao-Lian, ^ systematic approach to the search and transformation for _s in

fluid mechanics with emphasis on inverse and hybrid problems, Chinese J. Engrg
Thermophysics (English ed.) 2., 4(1990), Allerton Press, New York.

[18] Liu, Gao-Lian, VPs and generalized VPs for the hybrid aerodynamic problem of airfoil



156

Third Inmrna_on_l Co_¢r_nc_ on _v=rs_ D_sign Con_p_ andOpumiza_on in Engine_nng Sciences
_CIDES-Ur), Editor: G.S. Dulikravich. Washington D.C.. October 23-2_, ]99 l
r

cascade on an arbitrary streamsheet of revolution: Part(1), Scientia Sinica, 23, I0
(1980) pp. 1339-1347; Part(It), Chinese ]. of En9r9 Thermophysics, 2._, 4(1981) pp,335
-342.

[19] Liw Gao-Lian _ Yao, Zheng., VPs _ Generalized VPs for the hybrid aerodynamic pro-
blem of airfoil cascades on an arbitrary stream sheet of revolution: Part(Ill), Proc.

6th lnt'l Symp. FEM in flow Problems, Antibes, France, June 1986, pp.137-142.
[20] Yao, Zhen9 et al., Variational FE calculation for hybrid aerodynamic problem of

cascades on an arbitrary streamsheet of revolutiow Comput't Methods in Turbomachi-
nery, IMech.E, 1984, U.K. pp. 237-245.

[21] Liw Gao-Lian, VP families for hybrid problems of blade-to-blade fl0w aton9
axisymmetric streamsheet: A unified variabte-dumain approach(in Chinese), Acta Aero-

dynamica Sinica, _, 3(1985) pp.24-32.
[22] Liw Gao-Lian a Yaw Shaw A unified variable-domain variational approach to hybrid

problems of compressible blade-to-blade flow, ASMEPaper 91-GT-169(1991)
[23] Yaw Shan a Liw Gao-Liaw Variational FEMwith variable domain for sotvin9 type 'A'

hybrid problem of blade-to-blade compressible flow aton9 an arbitrary streamsheet of
revolution, Exper'l • Comput't Aerothermodynamics of Internal Flow (Proc. lot lnt't
Symp,) N.X. Chen• H.D. Jian9 (ed.) World pubt. Corp., Beijin9, Chin_ pp. 457-463

[24] Li_ Gao-Liaw VPs for hybrid problems of transonic cascade flow aton9 axisymmetric
streamsheet: A unified variable-dumain approach. Proc. 4th Int'l Symp. on Refined
Flow Modelin9 and Turbulence Measurements, Sept. 1990, Wuhan, pp. 175-181.

[25] Liw Gao-Liaw A variable-domain variational theory usin9 Clebsch variables for
hybrid problems of 2-D transonic rotational flow: Pt I ---Planar Channel design.
Proc. lnt'[ Conf. on Fluid Mechanics, July 1977, Beijing, China, pp. 314-319.

[26] Wang, Zhengming, Inverse design calculations for transonic cascades, ASME Paper 85-
GT-6 (1985)

[27] Wan9, 7_.hen9min9, A numerical method for solvin9 the inverse problem of cascade vis-
cous flow, Proc. Ist ISAIF, July, 1990, Beijing, China, pp.482-488.

[28] Wan0, Zhen9min9 et at., An improved method for aerodynamic desi9n of centrifugal
impeller blades, ASMEPaper 91-GT-76 (1991)

[29] Wang, Zhen9min9 et at., ^ quasi-3D design method of transonic compressor blades with
the function of improvin9 velocity distribution. ISABE Paper 89-7089, the 9th Int'[
Symp. on Air-Breathin9 Enoines(1989).

[30] Wu, Chuno-hua a Brosn, C.A., ^ theory of the direct and inverse problems of com-
pressible flow past cascade of arbitrary airfoils, J.A.S., 19_.._,3(1952).

[31] Zhou, Xinhai a Zhu Fangyuaw Finite volume method to solve the inverse problem for
transonic flow in cascades(in Chinese), Chinese J. En9r9 Thermophys., 6,4 (1985) pp.
331-335.

(32] Chew Zuoyi, The hodograph method for desi9n of transonic turbine cascade in revo-
lutionary surface(in Chinese), Chinese J. Engr9 Thermophys.3._,4 (1982) pp.353-356.

[33] Yao, Zheng, A hodograph-based FEN for 2-D transonic cascades and its 9eneratization
to cascades on arbitrary streamsheet of revolution (in Chinese). Master Thesis,
Shanghai Inst. of Mech. Engr8,1982.

[34] LiwGao-Lian, VPs and 9eneralized VPs for semi-inverse problem of compressible flow
alon9 S2-stream surface in axial-flow Turbomachinery, J. Shan9hai Institute of Me-
chanical Engr9, 3,1 (1981)pp.1-14.

[35] QiwRewet at., _new variational FE computation for the aerodynamic inverse problem

in turbines with Lon9 blades, ASNE J. Turbomachinery, 110_.__,4(1988) pp.545-548.
[36] Li_ Gao-Lian, A unified variable-domain variational theory of hybrid problems for

compressible S -flow In mixed-flow turbomachinery, Proc. 1987 Tokyo Int't Gas Tur-
bine Con9ress, Oct. 1987, Japaw VoL. II, pp. 259-264.(Paper 87-Tokyo-IGTC-34).

[37] Cab Ron9-Qian & Liu, Gao-Lian, Families of VPs for inverse a H hybrid problems of
an $2 streamsheet in mixed-flow turbomachines, lnt'l J.Heat and FLuid Ftow,_,3(1988)
pp.302-307.

[38] Xu, Hon9-Yi, Families of VPs for semi-inverse and H hybrid problems on a $2-



157

Third lnternal,JonalConfemmceon inverse,Design ConceptsandOpLimbzauonin Engineering Sciences
CICIDES-IID. Editor: G.S. Dulikravich. Washington D.C.. October 23-2_¢. ]991.
f,-. --%

streamsheel for fluids of pure substance (in Chinese) . Aria Aerod:,iLamic> 3iriita.
8,1 (1990) pp. 98-103,

[39] Tao, Chen9 & Liu, Gao-Lian, VPs for h.',brid problem of a.,.i_mmetric c.ompre_sibte
channel ftov, usin9 an ima9e plane, Prot, 3rd .lapall-C]lina JoiJll [iollf. oil Fluid Ma-
chinery, April 1990, Osaka, Japan.

[40] 6e, Manchu el at., A ne_ appruactl to tile calculation of $2 stream surface with full
iw,'erse ano h:brid methods for lurbomachine. ASMEPaper 8g-GT-262(1988).

141i Zhao, Xiao-tu el at., A simple method for solvin9 3-I) inverse problem_ of turboma-
chine flow and lhe annular constraint condition, ASME J. of Engr9 for Power, 107
(1985) pp. 293-300.

[42] Zhao, Xiao-lu, Qin Li-Sen, An appro×imate 3-D aerodyna,oic desiOn method for
centrifu9at impeller blades, ASME Paper 89-GT-73(1989).

[43] Lim Gao-Lian, A 9eneral i,,a9e-space theory of hybrid problems for fully 3-D
compressible flow in turbo-rotors:(I) stream-function formulation, Comput'! Methods
in Flow Analysis (Proc. of Int'l Conf., Okayama, Japan, Sept. 1988), H. Niki and M.
Kawahara (ed.), Okayama univ. of Science, pp. 936-942. {or. Chinese J. Engr9 Ther-

mophysics, 6, I(1985)pp.40-45)
[44] Liu, Gao-Lian et at., Ditto, Part (II) Axial-flow, potential function formulation(in

Chinese), Chinese J.En9r9 Thermophys., 9, 4(1985)pp. 331-333.

[45] Chen, Naixin9 et at., A numerical method for soivin9 aerodynamic hybrid problem

of fully 3-O flow in turbomachinery, Proc. 1st [nt't Symp. on ExperYt • Comput't Ae-
rothermodynamics of Internal Flows, Juty 1990, Beij in!}, China, pp. 441-448.

[46] Liu, Gao-Lian, A unified theory of hybrid problems for fatty 3-D incompressible ro-
tor flow based on VPs with variable domain, ASMEJ. Engro for GT s Power, 108, 2(1986)
pp. 254-258.

[47] Liu, Gao-Lian, A variational theory of hybrid problems for fully 3-D compressible
rotor-flow. A unified variable-domain approach, Coaput't Fluid Dynamics, G. d. V.
Davis • C. Fletcher, (ed.), North-Holland, 1988, pp. 473-480.

[48] Liu, Gao-Lian, Variational formulation of hybrid problems for fully 3-D transonic
flow with shocks in rotor, Proc. 3rd Int'l Conf. on Inverse Design Concepts
and Optimization in Engr9 Sciences, 0ct. 1991, Washington, D.C.,USA.

[49] Yan, Shans Liu, Gao-Lian, Variational FEN with variable domain for sotvin9 hybrid
problems of 3-D incompressible rotor flow, F.xper'l • Comput't Aerotheraodynumics of
Internal Ftow(Proc. 1st Int'l Symp.),chen, N.X._ Jiang, H.D.(ed.),Wortd Pubt.
Corp.,Beijin9, China, 1990, pp. 449-456.

[50] Yam,Sham and Liu, Gao-Lian, Variable-domain FEM based on VPs for sotvin9 hybrid
problems of fully 3-D compressible rotor-flow, Proc. 1991 Yokohama Int'l Gas Tur-
bine Congress, Sept. 1991, Japan.

[51] Mizuki, S. et at., Investigation concernin9 the blade toadin9 of centrifugal
impeller, ASNE Paper 74-GT-143(1974)

[52] Liu, Gao-Lian, On the optimal type of flow pattern in turbomachinery (in Chinese),
Research Note, Institute of Nechanics of Chinese Academy of Sciences, Beijing,
China, 1963.

[53] Xue, Ming-lun, Optimum aerodynamic design problem of axial turbomachines(in Chinese),
Research Report, Institute of Mechanics of Chinese Academy of Sciences, Beijin9,
China, 1975.

[54] Lu, Wen-caw The theory and experiment of optimum flow distribution for low pressure
axial fans, Proc. 2nd China-Japan Joint Conf. on Fluid Machinery, Oct. 1987, Xi'an
Chins, pp. 481-480.

[S5] Gu, Chuan-(;on9 b MinD, Yons-Mimo, Btade design of axial-flow compressors by the
method of optimal control theory, ASME Pap. 85-'{;T-182, 86-GT-183(1986)

[56] Liu, Oao-Lian • Wane, Jiasheng, Fundamentals of Aerodynamic Theory of Turbumachinery
(in Chinese), Machinery Press, Beljino, China, 1080.

[57] Liu, Gao-Lian, A new theory of 2-D cascades optimized aerodynamically via a
9eneratized maximum principle, Pt(I) • Pt(II) (in Chinese), Acta Mechanica Sinica,



158

ThirdInternationalCon/exemceon _vers_ E)csignConceptsand Opumtzat_oninEngirmcnng Sciences
(ICIDES-IrD. Editor:. G.S. Dulik:mvich. Washington D.C.. October 23-25. ]991
t'- "_

12, 4(1980) pp.337-346; 14, 2(1982) pp.122-128.

[58] Liu_ 6ao-Lian_ Aerodynamic optimization theory of a 3-D axiat-f|ow rotor-bladin9 via

optimal control. Proc. 6th Int'[ Sylp. on Air-Breathin9 En9ines, June 195], Paris,

pp. 313-318 (AIAA Paper 83-7037)

[59] Liw Gao-Lian, Aerodynamic theory of 2-D cascades optimized via opti,,a[ control,

Numerical _(ethods in Laminar and Turbulent Flow, Vo1.5, C.Taylor et al.(ed.), Pine-

ridge Press, U.K. 1987. pp.1739-1749.

[60] Wan9, Xue-Jin_ Optilal desi9n method for cascades in an axial ventilator(in Chinese),

8aster Thesis, North-East University of Technolo9y, China, 1983.

[61] Hun, Yaonan • Chen Naixin9, Optimization of the plane compressor blade aerodynamic

design, Proc. 6th Int'l Sy=p. on Air-Breathin9 Engines, June 1983, Paris, pp.487-495.
[62] Zou, Zi-xiong, Method of calculation of optimal velocity distribution on arbitrary

streamsurface of revolution for co=pressibte flow in cascades of turbomachinery.

Chinese J. En9r9 Thermophysics, I, 4(1980) pp. 341-347.

[63] Wu, Bao-ren • Liu, Gao-Lian, Progress in aerodynamic optimization theory of

turbo=achine btadin9(in Chinese), Advances in Mechanics, 14, 2(1984) pp. 161-174.
[64] Jian9, H.X. et at., A numerical method to weaken shocks in transonic cascades. Proc.

1983 Tokyo Int'[ Gas Turbine Con9ress, Japan.

[65] Liu, Gao-Lian et at., Theory of optimum design of 2-I) diffusers with optimal boun-

dary layer control, Proc.6th Int'l Sy,,p. FE8 in Flow Problems, Antibes, France, June,
1986, pp. 39-43.

[66] Gu, Chuan-9an9, Ji Yon91in9, Theoretical analysis of the optimal shape for 2-I)

diffuser with incompressible flow. Proc. 2nd China-Japan ]olnt Conf. on Fluid P4a-
chinery, Oct. 1987, Xi'an, China, pp.416-422.

[67] Ling, Zhiguan9 •Jin Juanqian, Design optimization of turbine annular axial-radial
exhaust diffuser and experimental verification(in Chinese), Chinese 2. Engr9 Ther-

mophys., 6, 3 (1985)pp. 245-248.
[68] Yao, F.S, Nethod of catculatin9 optimal parameters of throu9h-ftow components in

stream turblnes(in Chinese), Chinese J. Nech. Engrg, (1979) No.2

[69] Liu, Gao-Liart, Simple formulae for optimal solidity of 2-D compressor cascades based

on diffusion concept. ASME Paper 91-GT-308 (1991)
[70] Wu, GuoChuan • Feng, Qi, Optimization of the arran9e=ent of the front s, rear blade

rows of a tandem blade cascade, Paper $7-Tokyo-IGTC-19(1987)
[71] Liw &ao-Lian • Zhao, Yi-Hua, Generalized FEP4 via variable-domain variations:

Co9eneration of optimal 9rid and flow field, Proc. 4th National Conf. on Fluid
Hechanics, April 1989, Beijing, China.

[TP+] Liw Gao-Lian • Zhang, Dao-Fang, Numerical methods for soivin9 inverse problem of
heat conduction with unknown boundary based on VPs with variable domain, Nmm.Pdelhods

in Thermal Problems, Vo[. 5, R.W. Lewis et al.(ed.), Pineridge Press, U.K.,I987.

[73] Liu, Gao-Lian, A Novel variational formulation of inverse problem of heat conduction

with free boundary on an i=a9e plane, Num. Idethods in Thermal Problems, Vot.6, R.W.

Lewis et at.(ed.), Pinerid9e press, U.K., 1989, pp.1712-1720.
['/4] Liu, Gao-Lian, New VP families for direct, inverse and hybrid problems of free

surface 9ravity flow over a spillway. Turbulence Pdeasuremments _, Flow P4odeting, C.J.

Chert et at.(ed.), Hemisphere, Washington, 1957. pp.323-332.
[75] Liw Gao-Lian, The hybrid problem of free-surface 9ravity spillway flow treated by

VPs with variable domain: (1)Potential function formulation, Proc. 3rd Int'[

Sy=p. Refined Flow Hodetin9 _, Turbulence Ideasuresents, July 1988, Tokyo, Japan.
[76] Liu Gao-Lian, The hybrid problem of free-surface 9ravity spillway flow treated by

YPs with variable domain, (ll) Stream function formulation, Proc. 7th Int't Conf. on

FEPd in FLow Problem, 1989, Alabama, USA.

[77] Liw Gao-Lian, A var.iational theory of optimal meshin9 of spur 9ears (in Chinese),

J. of Shanghai Institute of Mech. Engrg, 2_, 2(1980) pp. 25-42
[78] Wilkinson, D.H., Calculation of Blade-to-Blade flow in a turbomachinery by stream-

time curvature, ARC RM 3704 (1970)



159

Third Inmmadonal Cortt'erence on Inverse Design Concepts and Optimi2.anon in Engineering Sciences
(ICIDES-IID. Edxtor: G.S. Dulikravich. Washington D.C.. October 23-25. 1991

[79] Wu, Chung-Hua, 3-O turbomachine flow equations expressed with respect to nonortho-

9onal curvitinear coordinates and methods of solution, Proc, Third ]nt'l Symp. on

Air-Breathin9 Engines, _iinchen, Germany, (1976)pp. 233-252.

[80] ltefez, M., Loveit, D., Numerical solution of transonic stream function equation,

AIAA-J., 21 (1983) pp. 327-335.
[81] Thomas, K.-_. a, Piendet, J.J., An automated interactive desi9n system for advanced

9as turbines, ASME, Paper 74-GT-82(1974).

_--.° °° .

• ..

r-.... ..._..}

[ I x H_]-P_obl_,,, I(It+D)xH ,,.,.

Fig. 1 Definition of Symbols for fully 3-D hybrid problems

. dZ

3 ) _e) _ 2 t

% , _, , p' ,

.i , ' • z

'/.+

Z

a) physical stream surface b) image-plane {_ (or g_ )

Fi9.2 Cascade flow and its ima9e plane



160

Third International Conference on Inverse Design Concepts and Optimization in Engine_nng Sciences
(ICIDES-IIT). Editor: G.S, Dulik:ravich, Washinmon D.C., October 23-25. 1991.

r0.1

.O5

.0

M_=O.a57
9,=10.0

=-ss. 1 .
••• ]mresen'c

i

, L/BL'_

0.5 _.

Fi9.3 Image-plane solution by

I

.._Nfe

..l,m a

.on4

-.eD

Fi9.4

_Katsanis and NcNatty

---- Ref.[lO]

i J 1 I I | t

.am .oft .t*l ,m,_ l

Tandem cascade profiles by an

inverse solution

q

momen t func t i on

M m

0.9

a6

, t t _ • t 1 a I ,t

aO _: (24, _ 06 tO

.F,'_._ [,1Od;_.t'ied diSLributioIl OI"

N,,.cn numOez'

Prof||e frqJn NACA L55 fOl

----- Pr_sc.t I_ t h(_J

Origina]

Modified

tZ

._o

- 2ta

-i,a

i I I Z I i I I I I I

' ' ,:-,c...---z--'---.-....,..,-,,
/ _-,,

/ t ,CAI.CttLAT1_ -Q_,.

--J----_L -.1--__ . L__ _L,. i I l l

Fig. 7 Cascade profile obtained by ffA-

problem solution

r_

0"4 l

c i --- h _.'.,'. _ V,'_euS

l -- _ <_4,',$ invisr;d

O.LJ ,.12 Otu 3,2a0 •

L
Fig.@ Comparison of profiles

to Fig. 5

correspondin9
Fi9.8 Viscous effect on airfoil shape

J



161

Third lnt=rnadonal Con/e.nmc_.z on _versa Design Conctpts and Opurnb_l_on in Engineering Sciences
CICIDES-I1T'). Edi[or: (].S. Dulikravich. Washinmon D.C.. Octob_," 23-25. 1991,

F
R_.s

-7

o_

.3

.L

O

-- lllYl_iCl])

'_= o.$

7

Fi9.8 Viscous effect on airfoil shape Fi9.10 FE solution of HA-problem

r
:o_. C_.

, j \ IP_OV:OfO _X _zfFIJ;I

J . I '
16

I I '\ ,_._ i i

II I _ \i :

, : x I
04, : i

OL c
ID 02 04 O0 Oil IO

(b)

u u.._

u uua

uu_j

u o _o

u u._/

-u u_,a

u uuu

l_ 0 0 0 Pr=_er,f

U 'au U /O O "IU U 60 0 I_0 1 .I._

Fig. 12 Airfoil shape by FE solution of

a Hc-probtea

"_ IT

_ + 0 0 0 h'rl, lml

-|1_ I

-,. L M- "

I

Fig. 11 FE solution of.HB-problem Fi9.13 Airfoi[ shape by IrE solution of

a H_-probtem

]



162

ThirdInternationalConl'erenceon I_verseDesignConceptsand OptimizationinEngineenng Sciences

_CIDES-II_. Editor: G.S. Dulikr2vich. WashinFton D.C.. Ocl.obcr '_ "_< ]991,._ -.._.

F

>

r

a) Physical space

b) Ima9e space

Fig. 14 3-D rotor flow and its image space

IlK' tmlil

I?M 77L X
169.C_L

,_,/_ ....... Z _?___q _'- _._
O' I(l I.'}' _-J 10 )6 43 49 -q.S "6"_-'69 W I0 J

20"/. span

W'(I/.)

14,1.26.. _..._.._ \m.\ _utq_,t

_0.I.]1L

I}_.]I [

O? I_ I.I LI I.O _6 4.7, 4'7 _.l .¢9 ft.6 Wll_

_0"1. span

t'1 (i/. I

2_,,I 26.

21_.lt_ onlcus_

OJI 1.4 1,9 _ 30 3.6 4.1 4 _ _2 I ? _ I I IClJ

70"I. span

Fi9.15 Distribution of _1 over

blade surface

L

20% span 40% span 70% span

Fig.I 6 The shape oF the blade after and before the

modification

ORIGINAL PAGE IS

OF POOR QUALITY

J



163

Third Intcmadonal Conl'erenoz on iLnvers_Design Conc._pts _d Op_m_zalnon in Engineenng Scienc_
(TCIDES-rlD. Editor: G.S. Dulik_vich. Washington D.C.. October 23-25. 1991

4.5J

4.ml

3,5M

{,0e

LSI

Z._

1.5!

- SF_|rlD 1

H I_L'T P_aI.D4 /

I
£ i i { i

i.B {}.Z 0.4 8.G 1.$ I.M

VelocltM ,}lsh'lknlionS

3,k_

2.5a

1,51 0_.i;

\
z L _ L _ , J _J{

9.2 I,4 i.6 J,I 1.11

+elo¢i|+ +£strilm¢ioas

4.50

4,_

{,51

)._

L561

1.5{

M . SP_+¢tlii_

i / \_-_

II
L _ £ £ l l}i.{ l .l £ ;ii.li O.Z 1.4 {II {.i

UtlaClIM dlscPLl_tieas

6.5ii
_f

+,34

l.ll P_ + + + I'1+*| msml¢

(,\
i,12 t

t_ _ .. :-- ._-: .-_-_- _ - r-'F;_

-.1_

-,3_1 ' ' ' L+.+ ;,_ +.+ _I,'+i, '
I I

+t,il I.M

{1.56
,f

0P_ga_l [{,H
0.34

• • _ {'Wl'{t _ISll"_{+

i,11 \ " * + Final P_svlt

-.lW

-.3i ] _

,+ ,*._1+:_'+:, +j, '
ll_J+ S_il_

Ca) hub <b) mean

II.+II
,p

0P_lim_J [LH
I.{4 •

" " " Fi_t _{$

'_.II '_. + + + hl.J PtPsu_ |

I. 112 +'+._'_
T+'I Z ;-;+l-_

-.14

-,{il , +

{l_b si_UmP

(C) shFoud

i

LM

Fi9.17 FE solution of (HAxD)-probten of a centrifugal compressor

t

13oo

I .lO0

0 ,_JOC

0 ?00

0 5O0

0 50

0 34

018

0 07

-0 14

0 30

• • IITBRI_ Pl:Ir_ It4

-- OIAf-C I PllOWttH

!_, I%I
+ i i l i

O0 0? 04 Of; O0 I 0

Pf IlS+lUrI_ dl+ It i_uI _

13O0

l tO0

n_

o Pcc

o soo

• • HYBImD

-- OIRECT _M.EH

!
n

iA,, .... ++++,
0 0 7 0.4 06 O.II

Pr eos_r • _ls trt_ullo+l

_._l]_

1.100

0 .llO0

O,700

O.B_

.0

. _ • • _YmqflO pIROIBLEH

-- OI_ECT PRO4i_L_EH

I

I'5 +'i,
I i i

0.0 0.2 O 4 0.0 OI! ! 0

_TOOIUr • d_l tr I_l|lon

..... Or lq--111 ]

I

* + * _m_l ,e_ult +"_4"4"

f,+. q, p-<"
----*"-*--_ , • • ._ .

.---+.+_. ,+ +_.+ -* .
{ • o

I
I l i l t l x l l

OO fl? 04 OG nO 1

Blqde 5t,llpe

e) hub

OlO

o 02'

r114

n 30

• • • IPIPIl {I,11111

¢ + + FIr_l result J.+11_

_.+_:._: : r:-.._ •

!
t t 1 , i t I i 1

O0 02 04 O6 Olil 10

Bklde 14hlpl

b) mean

0.60

o.w,..,

0._14 • • • FI_DI l_llls

I I + Fkmll res_JIt +

• -+--+-++'+-'_ti.l"-,

-O.14

I
-0._ I I a I l I J l I

O .0 O + 2 O 4 O 1 E 0 l l "0

c)shroud

Fi9.18 FE solution of [(Hc+D)xO]-probtem of an axial turbine stator

-. +

J



164



PRECEDING PAGE I_LAfCKNOT FILMED 165

Third Int_rnauonal Conference on Inverse Design Concepts and Opt.imuz_uon in Enginecnng Sciences

CICIDES-III). Editor: G.3. Dulikravich. Washington D,C,, Ql_K)bcr 23-25. 1991,

THE TURBOMACHINE BLADING DESIGN USING $2-SI APPROACH
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The boundary conditions corresponding to the design problem when the blades being simulated by the

bound vorticity distribution are presented. The 3D flow is analyzed by the two steps $2 - S1 approach. In

the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an

ax_ymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of

the blade producing the flow channel striction is taken into account by the modification of metric tensor in

the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is

satisfied automatically. The governing equation is deduced from the relation between the azimuthal component

of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided

by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream

sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is

taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet

is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential

to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this

condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface

obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the

penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the

inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.
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potential function

stream function

bound vortex distribution function, or loading function

tangential displacement

camber line inclination angle with respect to the meridional plane

Cartesian coordinates

cylindricalcoordinates

body fittedcurvilinear coordinates

determinant of the metric tensor

metric tensor elements

number of blades in the rotor or stator

thickness of the blade measured in the azimuthal direction

modified g22 simulating flow channel striction

determinant of the modified metric tensor (flow channel striction)

density

contraviant components of the absolute or relative velocity

absolute velocity

relative velocity

aaimuthal component of the absolute velocity

meridional streamwise curvilinear abscissa
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_7

p

p_
H

I

_7

Subscripts

/e

t¢

o

t

n

i,k

Superscripts
+

angularvelocityofthe rotor

pressure

totalpressure

stagnationenthalpyor pt/p

rothalpyor H + _(V0)

blade force

dissipativeforce

efficiency

transformedcoordinatessystem in$1 approach

leading edge

trailing edge
reference

tangentiel component

normal component
nodal point indices

upper side of the blade
lower side of the blade

1. INTRODUCTION.

Most of the blading design procedures consider the velocity distribution on both sides of the blade as the
initial data, the inverse problem becomes Lll-posed and the designer loses the control of thickness distribution of

the blade. To overcome this deficiency, this paper suggests an inverse method by representing the blades by a

distribution of bound and free vortices which produce the desired swirl (Vor) variation. By introduction of the
notion of associated elements on both sides of the blade in respect of the thickness distribution, and by imposing
a conservative flux penetration through each pair of the associated elements when the geometry of the blade

is not yet well defined, we obtain the well-posedness of the inverse problem. The iterative rectification of the

camber surface in order to cancel the flow penetration leads to the final geometry of the blade. Treating first

the 2D cascade design, §2 is devoted to show how to get the well posed inverse problem with the appropriate

boundary conditions applied on the presumed blade contour, and the procedure leading to the rectification of
the camber line related to the penetrating flux of the fluid determined on both sides of the blade. To treat the

quasi 3D design, the $2 and $1 approach as proposed by C.H. Wu [1] is adopted. The loading produced by the
velocity difference between the two faces of the blade is directly related to the bound vorticity distribution that

the blade has to generate. Assuming the number of blades infinite, the vortex distribution as well as the flow

field become axisymmetric IS2 flow}, §3 shows how the blade thickness distribution and the loading distribution
can be taken into account in this scheme, and how to deduce the pressure distribution on the blades when their

number is finite. An application to the case of the centrifugal impeller is presented. The loss scheme by the

introduction of a plausibh value of efficiency q for each streamline as suggested by J.H. Horlock [2] is used. This

approach opens up possibilities for the elaboration of a design which maintains the assigned value of the total

pressure gain in each stage by modifying the (Vsr) distribution in free space between blade rows. §4 is devoted

to the blade to blade flow ($1) inverse problem, the boundary conditions for 2D inverse problem axe transposed
to this quasi-3D flow. The stream function is used to define the flow field and the finite volume method is used

to solve the problem. Examples show the results concerning the design of centrifugal impeller.

2. INVERSE PROBLEM FOR THE 2D CASCADE.

Figure I shows the geometry ofthe blade characterizedby itsthicknessdistributionand the shape of

itscamber line.The arc elements taken respectivelyon the upper sideand the lower side tangentialto two

inscribedcirclescenteredon the camber lineat z - dz/2 and z + dz/2 axe calledassociatedto the camber line

element. The centeroftheseassociatedelementsare characterisedby the abscissaz ofthe camber lineelement.

Let Vo representthe upstream velocity,h the pitchofthe cascade,a and _ the inletand outletflow angles,the

circulationr of the bound vortexgenerated by the blade isgiven by:
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r = voh(sin a - cos a tan 8)

The bound vortex distribution on the blade can be represented by the function r/(z), where f(z) has to be a

monotonic increasing function of z for the inverse problem: /(zi_) = 0, .f(zt,)= I and df/dz > 0 defines the

local loading. Figure 2 shows the typical form of the function/(z), df/dz = 0 must be imposed near the trailing

edge in order to obtain the sero loading according to the Kutta-Joukowsky condition; when the zero loading

condition is imposed near the leading edge, the design will give a blade with adapted leading edge. The flow

fieldcan be represented by the velocity potential _ or by the stream function _b,the assignment of the bound

vortex distribution leads respectively to the following boundary condition applied on the associated elements

on both sides of the blade [al:

[_1_+ = Pf(z) or tan[a_d/]+_= Pdd-_/zdz (2.1)

As the boundary condition isimposed on the presumed contour of the blade, the penetration of the fluidmust

be admitted., In order that the boundary condition does not produce extra flux,the flux penetration through

each pair of associated elements is to be conservative, this implies:

or +_=o (2.2)

The solution of the inverse problem determines the fluxpenetrating through the associated boundary elements,

the camber lineinclination correction 60 isgiven by:

r 1,V,,,+ V. -
60=0.Sttan- +tan-1(V)] (2.a)

Using this,the camber linerectificationisperformed iteratively.For the 2D incompressible potential flow, the

complex potential _ + i_ is an analyticalfunction of z + iy, the panel method using the multiform singularities

distribution described in 14]was used firstlyto solve the inverse problem with success, this confirms that the

boundary problem iscorrectlyformulated. Figure 3 shows the initialand the finalshape of a blade designed with

adapted leading edge and with an appropriate loading distribution to prevent the boundary layer separation.

8. MERIDIONAL FLOW, S2 APPROACH.

In the firststep, the vortex distribution is transformed into an axisymmetric one by spreading it in the

azimuthal direction, this situation is equivalent to the case where the number of blades in the rotor or in the

stator isassumed to be oo, the flow fieldbecomes also axisymmetric and can be analyzed in a meridional plan•

Let fl f2 = 8, and fs represent the body fittedcurvilinear coordinates (Fig. 4), the meridional velocity is

represented by: [7 = V1_'1 + V3_'3 = W1_'1 + W3_'3, the continuity equation becomes:

where _ represents the determinant of the modified metric tensor due to the flow channel strictionproduced by

the thickness of the blades. Indeed, V_ represents the volume of the elementary cube: (gs × Fi) -F2, in the free

space I_'21= _ = r, and in the blade row space the thickness of the blade reduces the flow channel, ifr_8_

denotes the thickness measured in the peripheral direction,Nb the number of blades in the rotor or stator, the

modified element _2 of the metric tensor isdetermined by:

_aa=(1 NbS$'_ 2 =
,r

simulating the elementary volume with strictionin (3.1)is evaluated with .q=a. Using the stream function
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"¢ to represe=t the _ow _e]d by iml)os;.g:

U_ = l a¢ 1 0¢et U s = - (s.2)

She equation (3.1) is satizt_ed automatic&fly. The governing equation for @ is obtained by writing V x 0 = f_:_2,

where f)= repruentB the _imuthal component of V x '*7, it is deduced from the hub to |hroud equilibrium
condition. Let

V _ _ W 2 w2_
S = _-.+-- = - _d I = _ .+ = ll.+_ (V,r)

p 2 # # 2 2

The momentum equation is:

{17 {--_H j('b j_a { stator (3.3)_x _ = -vl .++7+7 _tor

It fact, there b , pressure gr.dient in the aximuthal direction i= the flow sp_e between bla.des,m the axial

symmetric $2 _ow where the number of blade_ iJ ,uppcmed in6aite, this pressure gradient dJJxppear, and the

wolume force Fb/# due to the blade| h a* to be _dded in the momentum equation. The lmm scheme I2] related

to the plaulible value of ei_ciency _ for each streaxnJJ.ue of the stage is a_lded, thh scheme raggests that the
dluipative force jF_/p is related to the wh"iation de Vet via _7:

p = _ (l--W)(_--W-%[III_-V(V_r)]If/ rotor
(3.4)

_ = 0 _ well as _ = 0 are imposed in the free space. Figure 5 shows the relation between the kinetic moment

distribution in the blade row space and the circulation of the bound vortices produced by the blades. Let Fv
denote the circulationgeneratedby the blade inthe sectioncut by an axisyrnmetricstream surface¢ = ctc,the

kineticmoment (Vsr},.,_generatedby the bound vorticeslocatedbetween the le_dingedge and the abscissam

caa be representedby:.

(v,,)_._= if,d,..,+ _r,l(,_,¢) (3.5)

Using (3.4) and adopting thataI/a__ or aH/a_ _ berg equ_ to -(F,_)_/_in the di_dpative_cheme, the

azimuthal component ofthe momentum equation leadsto:

a(V_r)+ vS a(V,r)l (s.o)

wh_"_ W_ = Vsr + w_ and V_ = V,r. The coordinates Iry,tem _ _ r.hcmen so that the const_t _s l_e$ are

iteratively replaced by the streamlines. The component following _-s of the momentum equation repr_,ents the

hub to shroud equilibrium condition, whi_ gives:

{_ + w_vin' (n), (n),] rotor {3.7)
Bt_tor

Let _ design the normal of the camber surface of the blade, we have:

As W 2._ m the rotorand %72._ i_ the stator,we have:

W _ or V_=-(_V'-+-_VS)

and/_ {(_, we have:
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"_,inz(z._).(s.6) ,_d thela,t s relatio,,,.(s.7)becomes: I

a J' _ ,,1 a(ve,) ,,, a(v,,)

_ { (i-,71r_-_ V, lv, O(v,,..____))÷v_O(v, dl _rotor Is.8,,)
(n I}(-_ W _ a_ _ a_s _ tstator

],_the freesp_ce,the component folJcm.ing_-softhe momentum equation le_ directlygo:

8H (v_,) a(Ver)
(s.sb)

a_3 ,a a_3 .

The dot product of the momelturn equation with $7 in the stator and in the free lpa_:e or with _P in the rotor

]ea_s to the following relations which serve to update the noda_ vaJues of H or ]:

free,p,_e an { o,tarot a'-_= ('7- a)_a(v'') (s.9,)
am

a(v,r)
al = (__ _)_ (s.gb)

rotor a--m 8m

where 8( )/Sm denotes the meridionalstreaznwi_etangentialderivative.Writing U x U = I_, we obtain

the governing equation of tk:

o_, ( )- ( o__)= _: (s._o)

For the i_vereeproblem, the distributionof I/_risu_i_ed, using (3._),0 _ isupdated iteratively.Let the

camber sttff_:e of the bl_le be defined by _ = _(_,_) + ere, if the coordinate lines _ _ ere are updated to
the strearnline_ iteratively, _ cam be computed u_ing the slip condition:

L

Figure _ shows the geometry ofthe blad£ngofa multistageturbopump obtained by solvingthe inverseproblem.

The CPU time on IBM 3090 inscalarmode isabout I minute forthe entire_urbopump. The lividused forthe

S2 computation is300x16. Figure6 _hows the comparison ofthe centrifugalimpeller_designed with _ = I and

q < I having the same levelof total preuure gain.

Be•de eurf_ce pressure evaluation. - Usually the S2 approach lea_ $o she determination of the mean

velocityon both t_cesofthe blade:

rotor _--[t,_V*V_ + 2_,,V_V' + ,_,V'V" + "'_)_]_/_ (S.Z:)
W .d-

stator V p_,(V_,.) =

Let AU denote the difference of the •beolute velocities (V+ - V-) or the relative velocity (W + - W-) on the

two fsce_ of the blwde, when the number of bl_les is Enite, this diE'erence is related to the local density of
bound vortex generated by the bible. In the $2 scheme, consider the bible _ection cut by • (_ "- cte surface,

the £ux of bound vortices generated by the element &_ of the bl_le is determined by _he flux of 1_ through

the elementary surface (i_S)s_ _ = _115_'_, where _ should be equal to 2_r/N_,. Using the Stoke_ rela_io_
that impliesthe circulationproduced by AU isequal to the £u.x of the bound _ortice_we let the foIJowing
relation:

(.6,U),_ = 2_ co_ ,, ,,_+zl'_.l_ (3.13)
' A'__ ve_'h-al_'_"
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where _ denotes the local angle of the blade section with respect to the meridional plane. (3.12) and (3.13) are
used to compute surface velocity on both faces of the blades, then the pressure distribution by the $2 approach

can be deduced. {Fig. 9}

4. BLADE TO BLADE FLOW, Sl APPROACH.

The blade to blade flow confined in each axisymmetric stream sheet is analyzed in order to define the final

geometry for each section of the blade and to obtain the pressure distribution. At the beginning, the contour
of the blade is created from the camber line obtained from the $2 step with the assigned thickness distribution.

The conformal mapping (m, O) ==) (x l, x2):

.,1;1 = ro

o I"

=2 = ro(e - 8o}

(4.1)

transforms the blade to blade flow confined in an axisymmetric stream sheet into a 2D cascade flow in the

(xl,x 2} plane. The body fitted coordinate system constituted by the equipotential lines _l = cte and the

streamlines _2 = cte of a fictive 2D flow around the cascade is created using the panel method {4]. In this

system, the continuity equation becomes:

(pv U') + (pv V :) = 0 (4.2)

where U i represent the contravariant components of the absolute velocity I7 for the stator and relative velocity
I_ for the rotor and

D(xl' x2) (r_)2rv_ = D(_', _)

where D(x 1, z2)/D(_ ', _2) denotes the Jacobian, r represents the local thickness of the stream sheet. Introduc-

ing the stream function ¢ with

U' = 1 0¢U2 1 a¢
pV_a_ 1

(4.3)

(4.2) is satisfied. From the momentum equation, we can show that the free vortex of the absolute velocity
shedding from the preceeding blade row must be tangential to the axisymetric stream sheet, the governing

equation of the blade to blade flow stream function is deduced from this condition: for the relative flow around

the blades of the rotor, we have:

ag21W la_1 + 0912W 2a(--_-_ + 2V_T d dml°gr (4.4)

Boundary conditions for the inverse problem:

Flux conservation: [¢]+ = 0 (4.5)Bound vorticity assigned: [W, d_ 1 - wr 2d0] +_= Fdf

The solution of the inverse problem leads to the determination of flux penetration on the blade contour, the
camber line inclination correction 60 is given by:

6o O.S[tan-" W ) ÷ -]= tT T + tan-' T T' {4.6)



171
Third !nternational Conference on Inverse Design Concepts and Optimtz.ation in Engineering Scicnces
(ICIDES-II!_. Editor: G.S. Du/iLravich. Washington D.C.. Octobcr 23-25. 1991

J

Figure 7 shows the network (_x, _) around a blade row for an impeller. Figure 8 shows the comparison
of the camber lines of the impeller obtained from the $2 approach and rectified by the S1 approach. Figure 9

shows the pressure distributions obtained from the $2 and S1 approaches. For the case of the turbopump, the

loading is optimised to avoid the cavitation. The results from the $2 and S1 computations are similar, but not
identical, the need of the S1 computation to obtain the final geometry definition of the blades is confirmed. For

one stream sheet, the CPU time on a IBM workstation RISC 6000//320 is about 40 minutes, or about 5 minutes
on IBM 3090 in scalar mode. The grid used is 1505<16.

5. CONCLUSION.

The representation of the blades by the vortex distribution enables the formulation of the welkposed

inverse problem, and which leads to design the blading of a turbomachine. The two steps $2 - $1 quasi-3D

approach has been applied on different axial and radial geometries. Several kinds of loading function have

been tried. The results show that the success of the blading design depends greatly on the meridional (Vsr)
distribution assignment associated with the loss distribution. To optimise the design in order to avoid the

formation of the cavitation or the separation of the boundary layer in the design condition, when the loading
is not too high, experiences show that an adequate modification of the bound vortices distribution function f

may effectively lead to prevent the surface pressure to be lower than the cavitation level or to maintain the
adverse pressure gradient below the boundary layer separation criterion. The inverse problem procedure has

been elaborated to calculate the turbomachines in incompressible range, the research works are planning to
extend this method to make the transonic designs.
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F

Meridional section of a multistage turbopump.

_L@O

The bladingobtainedby the $2 inversesolution.

Fig. 5. The blading of a multistage turbopump.L J
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Fig. 6. Centrifugal impellers designed with r/= 1 and ,7 < 1

having the 6ame level of total pressure gain.
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IA PROPOSED THROUGH-FLOW INVERSE METHOD FOR THE DESIGN OF

MIXED-FLOW PUMPS

Jo_o Eduardo Borges
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Av. Rovisco Pais !_!

1096 Lisboa Codex ¢; 'i

A through-flow (hub-to-shroud) truly inverse method is proposed and

described in this paper. It uses as a design initial specification an imposition of mean
swirl, i.e., radius times mean tangential velocity, given throughout the meridional

section of the turbomachine. In the present implementation, it is assumed that the

fluid is inviscid, incompressible and irrotational at inlet and the blades are supposed to

have zero thickness. Only blade rows that impart to the fluid a constant work along the

span will be considered.
An application of this procedure to design the rotor of a mixed-flow pump will

be described in detail. The strategy used to find a suitable mean swirl distribution and

the other design inputs is also described. The final blade shape and pressure
distributions on the blade surface are presented, showing that it is possible to obtain

feasible designs using this technique. Another advantage of this technique is the fact
that it does not require large amounts of CPU time.

1-INTRODUCTION AND LITERATURE SURVEY

The large majority of pumps is designed by using very simple and rudimentary

one-dimensional considerations concerning the velocity triangles, considerations

which allow the calculation of the evolution of the blade angle along the passage, see

for example [1] and [2]. These methods are so easy that they can be carried out using
only hand calculations and simple graphical processes.

Although some pumps are still being calculated using hand calculations, the
above one-dimensional procedure can and has been programmed as computer codes

which are being used by the most important pump manufacturers. The results

obtained with these techniques are the better the more radial the blade passage is.
However, for mixed-flow pumps, the velocity triangles vary appreciably along the

span, so that the above methodology is not good enough. In order to take into account

this effect in some way, designers usually split the flow passage in several parts,

applying the above considerations to each one.
When the pump designs involve some responsibility, the above step is followed

by a verification using a direct code which is run with the geometry arrived at

previously. Before reaching the final design, several iterations following the above
steps are usually required.

This complete process can be time consuming, so that one is left wondering
whether it could be improved. One possible way to achieve this could be by using

inverse methods, enabling the achievement of the blade row layout in a more direct

form, in one single step. Among inverse methods, two-dimensional techniques are the

most frequently used and the ones that require less CPU time. These two-dimensional
inverse methods can be classified into two main groups, according to the

approximations used when looking for the solution to the blade design. The first sort of
approximations gives rise to blade-to-blade methods since the calculations are done in

the blade-to-blade plane. This kind of methods is popular among designers of axial
turbomachinery, but it did not attract much attention among designers of radial

l_. J
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turbomachinery. The reason may be connected to the fact that the flow passages are
more complicated and there are significant changes in radius.

The other way of tackling the solution consists in working in the hub-to-
shroud plane (i.e., in the meridional plane), giving rise to what we could call hub-to-
shroud (or through-flow) methods. In this sort of approach the flow is supposed
axisymmetric, an approximation that can be interpreted as giving the mean flow
through the turbomachine. This sort of approach seems more popular among radial
turbomachinery designers. In fact, one can find examples of this kind of procedure as
far back as 1955, when reference [3] described some work applied to the redesign of a
centrifugal compressor, using a hub-to-shroud method. In this instance the blade
shape was kept fixed and given as input, while the shroud contour was altered and
evolved as a result of the calculations. The centrifugal compressors described in [3]
were built and tested, the experimental results being presented in [4]. The
experimental results show that this technique produced significant improvements in
the overall efficiency and peak pressure ratio.

A different strategy was followed in reference [5] which, again, describes the
application of an inverse technique to the design of centrifugal compressors.
Contrary to the previous example the meridional geometry (hub and shroud contours)
of the machine is supposed known and given as input. The other inputs consist of a
suitable normal blade thickness and the desired velocity loading (difference in
velocity across the blade) at hub, mid-span and shroud as a function of distance along
the camberline. As a result of the calculations the blade shape was obtained. This

paper presents some experimental evidence suggesting that the procedure gives
reliable results when the flow is attached.

The method proposed in the present work has got some similarities to that of [5]
in the sense that it is also a hub-to-shroud inverse technique that assumes as known
the meridional geometry and calculates the blade shape that will satisfy some flow-
field conditions, given as input to the procedure. The input design specification used

here is a mean swirl (radius times mean tangential velocity, rV0) distribution given

throughout the meridional section. This design specification is somewhat unusual, but
a suggestion in this direction can already be found in the work of Wu (see [6]) and it is
ideally suited to the design of radial turbomachinery as discussed in [7]. In fact, the
work of [7], which presents a three-dimensional inverse method using a mean swirl
specification, shows that the mean swirl specification is related to the way the work is
imparted to the fluid as it passes through the blade row. In other words, the mean swirl
can be related to the blade loading across the blades. Another reference that discusses
the use of a mean swirl imposition is [8], where the equations to be used in the present
work are derived. Nevertheless [8] does not present any practical examples of

application of the equations.

2-DESCRIPTION OF THE DESIGN METHOD

Throughout this work we will use a right-handed cylindrical polar coordinate
system defined by (r, O, z), where r is the radius, O the angular coordinate and z is the
axial distance. In addition, we will use an auxiliary coordinate o_, defined by:

cx = 0 - fir,z) ( 1)

where f(r,z) is the angular coordinate of a point on the blade camber surface. This
variable c_ can be interpreted as a sort of helical angular coordinate aligned with the
blade, so that when

L

2_(x =m-- (2)
B
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.'-with m an integer (m ..... -1, 0, 1, 2, 3.... ) and B equal to the number of blades of the
_turbomachine, we are on a blade surface (eq. (2) describes the blade shape).

In the following we will use bold underlined characters for vectors and mean
values will be denoted with an overbar.

2.1 Velocity Flow Field.
Since it was intended to apply this method to design pumps, it was assumed that

the fluid was inviscid and incompressible and, for simplicity sake, the blade thickness

is not considered in this procedure.
In agreement with the through-flow approximation, the flow through the

turbomachine will be assumed axisymmetric even in the blade region. This mean

velocity field will be calculated using the streamfunction concept and the value of the
mean vorticity. Indeed, since the vorticity field is solenoidal, it can be written as the
cross product of two gradients of scalar functions. One of these scalar functions may
be c_ according to the fact that all the vorticity is confined to the blades. In fact, if we
suppose the far upstream velocity is uniform (an approximation quite frequent), we
can say the flow is irrotational at inlet. Concentrating in designs that execute constant
work along the span, it is concluded that the flow must remain everywhere
irrotational according to Kelvin's theorem. So, if there is any vorticity at all, it must be
bound to the blade surfaces, justifying the statement just made. The other scalar
function in the expression for the vorticity turns out to be the mean swirl as is shown

in [7]. Therefore, the exPression for the mean vorticity, D,. is:

= rV 0 x V_ (3)

and now that the mean vorticity is known, the corresponding velocity field can easily
be calculated. It is indeed known that the mean vorticity is the curl of the mean

velocity V, or:

=Vxy_ (4)

Equating the O-component of eqs. (3) and (4) the following equation is
obtained:

=
/)z _ r /)z _ r _r bz

(5)

relating the velocity field to the blade shape, f, and the mean swirl rV0. Besides this

equation, the velocity field must satisfy the continuity equation. In order to achieve
this we introduce the concept of a streamfunction defined by:

-- - !_W (6a)
Vr = r c3z

-- = i.__ (6b)
Vz r ar

1 J
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!so that Ibis definition satisfies identically the continuity equation for incompressible

flow, i. e., V.y_ = 0. The actual value of _" appearing in the definitions (6a) and (6b) is

going to be determined substituting (6a) and (6b) in eq. (5). In Ibis way we arrive at:

(7)
Or2 r c3r _2 Or _r bz )

For the resolution of this equation it is necessary to specify a complete set of
boundary conditions. The boundary condition to use along the endwalls (hub and
shroud) is the one that states that there is no flow through the solid .walls. Using the
streamfunction concept, this fact is expressed as:

V = Const. (8)

or, in other words, the hub and shroud must be streamlines of the flow.

Far upstream we know the mean velocity vector, V_**, since it is given as input.
Therefore we can write:

I_ = V_**. n (9)r 3s

where s is distance along the far upstream boundary and n is the unitary vector

perpendicular to it. This expression enables us to calculate the values of ¥ along the
far upstream boundary, using a simple numerical integration. At the far downstream
boundary a similar expression applies since the velocity there is uniform because the
flow is irrotational at inlet and the blade row is supposed to execute constant work
along the span. In this way the complete set of boundary conditions is obtained.

The partial differential equation (7) was solved using finite difference
techniques. As a typical mixed-flow pump has a meridional section with complicated
geometry bounded by curved boundaries (hub and shroud profiles) it was decided to
use a transformation of coordinates to body-fined curvilinear coordinates (see [9]).
Since this coordinate system should be easy to generate and require little
computational time, it was decided to use an algebraic transformation. For this kind of
transformation of coordinates, mesh points are distributed along quasi-orthogonals
and quasi- streamlines. Fig. 2 shows the grid used in the calculations to be discussed
later on.

Eq. (7) was discretized using second-order accurate central difference
formulae, obtaining a nine-point difference star. The resulting finite difference
equations were solved by a relaxation method. In the present case, a Gauss-Seidel

relaxation scheme was used, implemented in conjunction with a multi-grid technique
in order to accelerate the convergence rate of the solution. A good description of
multi-grid methods can be found in [10], and, in fact, the relaxation subroutines used

in our program are a slightly modified version of the ones presented in [10].

2.2 Equation for the Determination of the Blade Shape.
After calculating the velocity field using the information presented in the

previous subsection, it is necessary to evaluate the blade geometry. That is done by
requiring the blade to be tangent to the velocity vector. This condition can be
expressed as:

W .Vt_ =0 (10)
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where ._. is the local relative velocity, _ =_ - U . Expanding eq. (10), the following

expression is obtained:

Of 3f rV-__
Vz Ozz+ -Vr _r - r2 -to (11)

where f is the angular coordinate of the blade and to is the rotational speed of the blade

row. Vz and Vr are the mean axial and radial velocities, respectively.

Eq. (11) is a first-order partial differential equation with characteristic lines
coincident with the meridional projection of the streamlines. In order to integrate this
differential equation, some initial data must be specified along a line roughly
perpendicular to these characteristic lines and extending from hub to shroud. This
initial data on f will be called the stacking condition of the blade. In our method this
stacking condition is implemented by giving, as input, the values of the blade
coordinate f, along a quasi-orthogonal, for example, at the leading edge.

After the stacking condition is specified, we can integrate eq. (11), since all
the velocities that appear in it are known from the previous iteration. The integration
of eq. (11) was done using finite difference methods. More specifically, an Euler's
modified method (see [11]) was used. This is an implicit numerical scheme that has a
truncation error of second order in the mesh size and is consistent and stable.

2.3 Estimation of Blade Surface Pressures.

One result that is important in any design method is the values of pressure on
the suction and pressure surfaces of the blade, for judging whether the pressure
distribution is adequate or not. In order to estimate these values starting from the
axisymmetric solution it is necessary to calculate the blade surface velocities using the
mean values known. To do that we begin by determining the velocity jump across the
blades (W +- W-) which is given by (see [7]):

W+_W_ = 2__En(VrV 0 x Vtx ) x Vtx
B Vt_.Vct (12)

where, for a pump, IV + is the relative velocity at the pressure surface and IV- is the

relative velocity at the suction surface. This expression is physically plausible as it
gives a jump in velocity which lies on the blade since it is normal to Vt_ (a vector itself

normal to the blade). In addition, we would expect the jump to be normal to the

2n [Vr_ 0 x V t_ ], lying in the blade. Knowing the velocity jump andvonicity vector, --ff

assuming the velocity profile is linear between suction and pressure surfaces (a
frequent approximation in hub-to-shroud methods, see [12]) it is possible to estimate
the velocities at the suction and pressure surfaces. Indeed, their values are going to be
equal to the mean velocity (solution of the axisymmetric problem) plus or minus one-
half the velocity jump. Afterwards, using the fact that the flow is irrotational at inlet
and applying Bernoulli's equation, the expression for the difference in pressure
across the blades is obtained. The final expression is (see [7]):

p+ _ p_ 2n -- --= --floW .VrV 0 (13)

L 1
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where p+ is the pressure at the pressure surface, p- the pressure at the suction

surface and p is the fluid density. W is known from the velocity field calculation so

that all the terms in the right-hand side of eq. (13) are known, enabling the
estimation of the pressure loading across the blades.

2.4 Flowchart.
To end section 2, we would like to draw the attention of the reader to the fact

that the vorticity depends on the blade shape, f, which in its turn is an outcome of the
calculations. So, the calculations must be iterated until convergence is obtained. This
is done according to the following flowchart:

(i) input of initial data - specified values of rV0' definition of meridional section and

body-fitted curvilinear coordinate system and all the relevant parameters;
(ii) estimation of a first guess for f, assuming that the mean velocity is uniform along
the quasi-orthogonals;

(iii) using the input values of mean swirl, rV0' and the values of blade shape, f, from

last iteration, calculate the mean velocity field (solution of eq. (7));
(iv) update the blade shape, f, by integration of eq. (11);
(v) if the solution is converged output the blade shape, f, and other relevant results.
Otherwise go back to step (iii) and initiate a new iteration.

This flowchart was implemented as a FORTRAN computer code and applied to
the design of the impeller of a mixed-flow pump.

]- DISCUSSION OF APPLICATION TO A MIXED-FLOW PUMP

In order to show the potentialities of the method, it was decided to apply it to
the design of a mixed-flow pump. The chosen pump was based on a real machine
which had as nominal conditions a value of 28 m for the head, H, a nominal volume

flow, Q, of 600m3]h and a rotational speed of 1450 r.p.m.. These values give a

nondimensional specific speed parameter equal to 0.919. The rotor has 8 blades and a
tip diameter equal to 320 ram. This value will be used to non-dimensionalize all the
linear dimensions and the velocities will be made nondimensional by using the

transport blade tip velocity, o_rtip (its value is 24.3 m/s).
The meridional geometry used in the calculations is based on an existing pump

(with minor alterations), designed by a Portuguese pump manufacturer using hand
calculations and graphical processes. The final meridional shape used is defined in
Fig. 1. A grid formed by 145 quasi-orthogonals and 57 quasi-streamlines was fitted to
this meridional section, there being in the blade region a total of 61x57 points. Fig. 2
shows every other line of the grid used. As can be seen, a region upstream and
downstream of the blade zone was considered in the calculations.

An important input to the present inverse method is the specification of mean

swirl, rV0. As it is supposed that the pump accepts the flow with no swirl, the value of

r V0 along the entire leading edge is considered equal to zero. At the trailing edge the

value was also considered constant in order to obtain a design that executes constant

work along the span. The necessary value of rV0 at the trailing edge depends on the

work per unit mass of fluid desired for the rotor, which is a value determined by the
desired head and an assumed value of efficiency (in our case considered equal to 0.86).

The value of rV0 used at the trailing edge is 0.5411 tor2ip.
t_
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Another restriction was imposed on the derivatives of the mean swirl at the
leading and trailing edges, namely, we forced there a zero derivative along the quasi-
streamlines. This was done in order to obtain a zero pressure loading at the trailing
edge (as is required by the Kutta-Joukowski condition), and at the leading edge. The
equivalence between a zero derivative of the mean swirl and zero pressure loading
can be seen from expression (13) which shows that the pressure loading depends on

the gradient of mean swirl, being zero where the gradient of rV0 is zero, as it is the

case at the leading and trailing edges.
This close equivalence between derivatives of mean swirl and pressure loading

across the blade was one of the factors used when choosing the input mean swirl, rV0,

along the entire meridionai section, and whose contours are presented in Fig. 3. The
other factor considered was the attempt to avoid a blade shape too twisted which would
be difficult to manufacture. These two factors were exactly the same guidelines
advanced and discussed in [7] when choosing the mean swirl for a completely
different turbomachine, a radial inflow turbine.

Recalling briefly the arguments advanced in [7] and which are sufficiently
general to apply to the present situation, it is evident from expression (13) that the
pressure blade loading is proportional to the product of the modulus of the relative

velocity and the value of the derivative of rV0 along the meridional projection of the
flow streamlines, or:

2____n arVo
P+-P-= B (14)

where s is distance along the meridional projection of the streamlines. In a well

designed machine, I -I does not vary abruptly and the streamlines have a direction

close to the quasi-streamlines. Therefore, eq. (14) implies that the pressure blade

loading is mainly influenced by the value of the derivative of rV0 along the quasi-
streamlines, which is a value known at the start of the calculations, and so can be
controlled. In this way, if it is desired to design a blade with a big loading near the

leading edge, then the derivatives of rV 0 along the quasi-streamlines should have

large values near the leading edge. In addition, if one wishes to obtain a pressure

loading with a smooth evolution, then the derivatives of rV0 should be watched with

special care, specifying them as smooth as possible and with a monotonic variation
from the leading to the trailing edge. From the point of view of the pressure loading
the most unfavourable situation is along the shroud, so that there the derivatives
should have a smooth variation.

The other argument that one should bear in mind when choosing the input
mean swirl schedule is the one connected with the amount of blade twist. In order to

clearly understand this argument it is important to rewrite eq. (11) along a
streamline, obtaining:
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8.F

jfa- fb = I w8 dm = (_ - o_r) dm

b b

(15)

where a and b are two arbitrary points on the same streamline, f is the angular

coordinate of the blade, Vm is the mean velocity in the meridional plane and m is the

distance along the meridional projection of the streamline. If one wishes to control

the total variation in the angular coordinate of the blade, fa- fb' it is convenient to

avoid high values for the expression under the integral sign in eq. (15). This can be

achieved if one specifies the value of rV 8 so that W e has small values, or in other

words, if one specifies rV 8 so that the value of V8 closely follows the local value of the

transport velocity, e_r. This is the more important, the lower is the value of radius and

of the meridional velocity Vrn. From the point of view of highly twisted blades, the most

critical streamsurface is the hub, not only because there the radius and meridional

velocity take the lower values in the machine, but also because the meridional flow

path is usually longer along the hub than anywhere else in the machine.
The next set of four figures is presented to demonstrate that the two above

points were taken into consideration. Indeed, Fig. 4 gives the evolution of the input

r V8 on the hub and the shroud. It is clearly seen that on the shroud the evolution of

r V8 is quite gradual and smooth while at the hub the opposite happens.

Fig. 5 shows, on the same graph, the values of (or and the specified values of

V8 at the hub. Here it is evident that, on the hub, V8 has an evolution which is almost

parallel to ¢0r, for most of the flow path and without much consideration in the

direction of obtaining smooth derivatives. This was done so that W8 at the hub

presented small and approximately constant values along most of the blade, leading to

a reasonable overall change in the values of blade angular coordinate, f.

From the next figure, Fig. 6, it can be seen that the contrary happens on the

shroud, where Ve was chosen to have a smooth variation rather than following the

local value of blade speed, mr. In fact, the main concern when specifying the mean
swirl at the shroud was to obtain an adequate pressure distribution and not to control

the overall variation in the blade angular coordinate, f.

The above ideas are corroborated by the next figure, Fig. 7, where the

derivatives of rV 8 along the quasi-streamlines for the hub and the shroud are

presented. As can be clearly seen, the derivatives at the shroud present a smooth

variation while the same does not apply at the hub, where a more abrupt change of

the rV 8 derivatives can be detected.

Using the close relationship between rV 8 derivatives and pressure loading one

can conclude that the present design presents a large loading near the leading edge at
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the shroud streamsurface, while at the hub streamsurface the blade loading is more

evenly spread. However, one should point out that, at the hub, the derivative is zero
for approximately the last 15% of the meridional flow path. This indicates that there
will be a small pressure loading along the last portion of the blade at the hub,
suggesting thai perhaps one could use a shorter flow path there. This idea would entail
an alteration of the trailing edge shape (using a trailing edge inclined to the axis,

instead of parallel) and so, was not pursued further.
The inverse computer code was run, using the input described above together

with a stacking condition imposed at the trailing edge and which consists of a linear
variation of f between the value of 0.0 (at the hub) and 0.10 (at the shroud). As a result

the blade shape described in the next figure was obtained. Since it is difficult to
visualize the blade three-dimensional geometry, we decided to present the blade

geometry in Fig. 8 as a view of two consecutive blades, as would be seen by an observer
looking in the direction of the impeller axis. The blade obtained seems typical of a
pump impeller and no particular problems are envisaged during its manufacture,
since it is not a highly twisted blade.

In the next plot, Fig. 9, it is presented the estimated pressure distribution on
hub and shroud, assuming a linear variation of the velocity from suction to pressure
surfaces and using the procedure already discussed in subsection 2.3. Thc prcssurc

coefficient, Cp , used in this plot is defined as:

(16)

where _-ref is a reference relative velocity, which is equal to 0.311_rti p in the present

case. Notice that the loading has a behaviour quite similar to the evolution of the

derivatives of rV 0 along the quasi-streamlines, shown in Fig. 7, bearing out the

comments made above, concerning the close relationship between derivatives of rV0

and pressure loading. For example, it is seen that, at the hub, the pressure loading
varies more abruptly than at the shroud, and along the last 15% of the flow path at
hub the pressure loading is zero as was already expected from the values of derivatives
of mean swirl. It should also be remarked that the distribution of pressure on the blade
surfaces at the hub is not ideal since its variation is not smooth and presents some
decelerations. However, the optimization of the pressure distribution would entail
changes in the meridional section of the machine, and so was not tried in this work.

One advantage of the present method lies in the fact that it is quite rapid,
requiring small amounts of CPU time. In fact, the present run required lm 39s of CPU
time in a VAX 3400 computer. Since it is computationaly so cheap, several different
input mean swirl distributions can be scanned quickly, enabling the choice of the
most appropriate mean swirl schedule.

4- CONCLUSIONS

A through-flow (hub-to-shroud) inverse method was proposed and
implemented as a computer code. In the present implementation the flow is assumed
incompressible, irrotational at inlet and the blade thickness was not considered
during the calculations. The necessary equations are presented and, as an example of a
possible application, the inverse method was used to redesign the rotor of a mixed-flow

pump.
The present method uses as an input specification the value of mean swirl,

rV0
This

This input specification was chosen using a reasoning similar to that used in [7].

is remarkable, since the turbomachine designed in [7] was a radial-inflow
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-turbine, and indicates that the strategy developed there is quite general, being able to

cope with radically different machines. Briefly, this strategy consists in using the

input mean swirl to control the pressure loading on the blades and the overall
variation in the angular coordinate of the blade, f.

This work also shows that further research should be done in order to obtain

reasonable pressure distributions on the blade surfaces. In fact, the design presented
here has a pressure distribution on the hub which is not the ideal one. The

optimization of the pressure distribution will probably involve some changes in the
meridional section (hub and shroud contours).

One advantage of the present technique is the fact that it requires small
amounts of CPU time. So it is a convenient tool to scan quickly and inexpensively

several different input mean swirl distributions, in order to find the most appropriate
one.
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A new inverse inviscid method suitable for the design of rotating blade sections lying on an

arbitrary axisymmetric stream-surface with varying streamtube width is presented.
Given are the geometry of the axisymmetric stream-surface and the streamtube width

variation with meridional distance, the number of blades, the inlet flow conditions, the rotational

speed and the suction and pressure side velocity distributions as functions of the normalized arc-

length. The flow is considered irrotational in the absolute frame of reference and compressible. The

output of the computation is the blade section that satisfies the above data.
The method solves the flow equations on a (_1,1I j) potential function-streamfunction plane

for the velocity modulus, W and the flow angle [3; the blade section shape can then be obtained as

part of the physical plane geometry by integrating the flow angle distribution along streamlines. The

(¢,l,tl/) plane is defined so that the monotonic behaviour of the potential function is guaranteed,

even in cases with high peripheral velocities.
The method is validated on a rotating turbine case and used to design new blades. To obtain

a closed blade a set of closure conditions has been developed and refered_in the paper.

constant number

flow angle
streamtube thickness

peripheral distance

potential-type function
stream function

LIST OF SYMBOLS

A1...A9 differential equation coefficients B
m meridional distance 13

fi outward unit vector (An)
R radius 0

U peripheral velocity • 1
_/ relative velocity tlJ

INTRODUCTION

The design method which is presented in this paper is developed in order to use the results

of the meridional plane calculation and in particular the geometry of the axisymmetric flow

streamtubes. The design method is, then, applied in order to specify the blade section shape lying

on each axisymmetric stream-surface. The complete blade is constructed by stucking these blade

section shapes in the span-wise sence, as desired.
Blade design methods have already been developed in the past, for both incompressible and

compressible flows (refs [1]-[11]). However, most of them refer to plane cascade configurations only.

During recent years the topic of developing blade design methodologies has received particular
attention and important contributions have been published in this framework (refs [1]-[5]).

The aim of the present effort was to develop an inverse inviscid method supporting the blade

optimization procedure described in reference [19] and capable to deal with the general case of an
arbitrary rotating cascadel The method follows the work of Schmidt 191and Zanneti Illl concerning

the equations employed. However, it formulates the problem in a different way and employs
different numerical techniques as well as closure conditions, for reasons explained below. A first.
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version of the present method, using the classical potential function/stream-function definitions was l
presented in reference [12]. Nevertheless, problems occured, when the method was applied to high

speed rotating cascades because of the non-monotonic behaviour of the potential function. Recently,
a new version has been developed, capable of overcoming this problem. This improved version

which makes use of a more appropriate definition of the potential function/stream-function plane

(here refered as (Ol,tl;)) is presented in the present paper.

POSITION OF THE PROBLEM AND DEVELOPMENT OF THE EQUATIONS

A schematic representation of a peripheral cascade is given in figure 1. The aim is to com-

pute a closed blade section, given the stream-surface geometry, the streamtube width variation with

the meridional distance (m), the_approximate number of blades (N), the inlet stagnation conditions

(PT1,TT1) and velocity vector (W1), the meridional position of the inlet stagnation point (ml), the
rotational speed (co) and the derived outlet flow angle 032). Assumed given, as well, are the suction
side velocity distribution and an approximate pressure side velocity distribution versus arc length.
The number of blades and the pressure side velocity distribution will change during the computation,

in order to obtain a closed profile, with the constraint to alter them as tittle as possible.

The flow is considered steady, inviscid, compressible subsonic and irrotational in the absolute
frame of reference.

The physical plane is presented in figure 2a. The equations written on an axially symmetric

system (m,8), are:
a) the continuity equation

_--_---(O R (An) Win) + _--_-----(p R (An) Wu) = 0 (1)
"_ m R_O

b) the absolute irrotational flow equation

1 7(RW u + o_R 2) "_W m

R _m R_0
= 0 (2)

In the previous version of the method (ref.[12]) a transformation is performed to the (O,Its)
plane defined as

x V stll = p (An) W (3)

VsO = (W + _xR) (4)

where V s is the surface gradient operator and "fi the normal to the surface unit vector.

The difference dO along iso-tlJ tines is equal to

dO = (W + c0 x d_ = Wds + coR2d0 (s)

This difference, however, is not always positive since there may exist certain high peripheral

speed cases for which dO locally takes negative values and, thus, • is non-monotonic along

streamlines. This fact prohibits the mapping of the physical coordinate plane to the
potential/stream-function plane (the Jacobian of the transformation becomes zero) and thus no

arithmetical solution is possible. To overcome this inconveniency, a new transformed plane (O 13I0

is defined in the following way

nxVstlJ = p(An) W (6)
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_ _ ... )_[Vs Ol = w + U-(B/R) (7

where B is a vector parallel to the peripheral velocity _ and its modulus B is constant. The

difference dOl along a streamline is, then, equal to

dO1 = (W+_xR-B/R)d_ = Wds+(toR2-B)d0 (8)

It is obvious that B can be selected is such a way that guaranties the positivity of the Jacobian of

the transformation from the physical to the (Cl,l,tlJ)-plane.
On the (_l,tlJ)-plane the equations of continuity and absolute irrotational flow can be

written in the form

2 2
Al(lnW)o101 + A2(lnW)_ 1 + A3(lnW)o 1 + A4(lnW)w w + A5(lnW)w +

A6(lnW)w + A7(lnW)ol_ + A8(lnW)o I (lnW)_ + A9 = 0 (9)

_: F1(W,13,R,(An)) (10)

"_.13
_= F2(W,13,R,(An))
)Ol

(11)

The expressions for the coefficients A1 to A9 are given in the reference [15]. In the above

equations O1 and tlJ are the independant variables, while the velocity modulus (W) and the flow

angle (13) are the dependent ones. Equations (10) and (11) for the flow angle are equivalent so

during the calculation one of them may be utilized.

THE BOUNDARY CONDITIONS ON THE (OI,tlJ)-PLANE

The transformed plane-(_l,tlJ) is presented in figure 2b. The flow quantities are known at

station (1), inlet, and the flow angle at station (2), outlet. The integral mass flux conservation

equation, the energy conservation equation along a meridional streamline and the isentropic flow
relations are used to calculate flow quantities at station (2). The integral mass flux equation is
written in the form

R 1 COS131 (An) 1

02W2 = PlW2 (12)

R 2 cosl_ (An)2

and the energy conservation equation along with the isentropic flow relations results to the following

expression

02 W12"U12 W22"U22 l/y-1
--: (1 + _ ) (13)

01 2CpT1 2cpT1

From these two equations the flow quantities (02,W2) may be calculated for a known flow angle 132.

The integral momentum equation can be written in the form

F = ds" = Wds + F 1 =D (R1Vul_R2V.2) (14)
N

L blade blade
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Vwhere
¢

= fJl_o_R2 dOF1

blade

This equation relates the flow conditions at the inlet and the outlet with the circulation F which

depends on the velocity distributions along suction and pressure side, as well as, on the blade section

geometry. Integral F 1, depending on the blade section geometry, is not a priori known. This explains
one of the difficulties of the inverse methodology applied to arbitrary rotating cascades. Note that

F 1 is zero only when the radius R is constant. During the computational procedure the integral F 1
is given an initial reasonable value and corrected accordingly, each time a blade section shape is

computed. In any case the value of F must be compatible with the imposed value of the outlet flow

angle 132,so that, if the suction side velocity distribution (being most sensitive) must be maintained,
the pressure side velocity distribution must be chosen to satisfy this value of F.

Considering, again, figure 2, periodic conditions are imposed along the ((AB),(EF)) and

((CD),(GH)) pairs of boundaries. W(cI,1) is specified along the suction and pressure side solid
boundaries and the corresponding value of _1 is calculated from the following relation

d_l = Wds + (o_R2-B) dO (15)

Consequently, differences in potential from a station v to a station _t may be calculated as

(16)

Moreover, the way that the (_l,tlJ)-plane was built assures that

IFA_I = A_ ; A_I
E

c+A_I

B
=F; AO1

D

=A_I

C

H

G
(17)

During the computational procedure, the magnitudes of A_ IA and AO I D are specified with
the constraint to take them large enough in order to reach at AE and DH (seettigure 2b) uniform

conditions with sufficient accuracy. In this way, the position of the inlet and outlet of the calculation

domain in the physical plane (positions of AE and DH in figure 2a) is not yet specified.However,

using equation (4) along the peripheral direction one may get

dllJ = o(An)Wcosl3Rd0 (18)

so that the corresponding stream function differences are described by the following relation at the
inlet and the outlet stations

Atll = o(An)Wcos13Rd0
v

(19)

Along the inlet and outlet stations the flow is uniform with velocities and flow angles, W r W 2 and

131,132,respectively. Consequently, if tlJE = tllF= IlJ G = Ill H = 0 is the streamfunction value characterizing

the lower boundary, then the one characterizing the upper boundary, according to equation (19), is l
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A 2nR 1 2nR 2 D
Atll = _)lWlCOS[31_ (An) 1= 02W2cos_2_ (An) 2= Alp

HE N N

(20) j

The upper boundary being a streamline, Ill A = I]JB= Ill C = IP D.

THE NUMERICAL INTEGRATION OF THE EQUATIONS

Equations (9) and (10) or (11) are considered in the (_l,_)-plane, which in general is non-

orthogonal. If one considers suction and pressure side extensions of equal length in the periodic

zones (to facilitate the application of the periodicity conditions), then the computational domain
on the (cl, l,tlJ)-plane takes a trapezoidal form (see figure 2). A non uniform discretization of the

(_l,tlJ) boundary regions was found to be efficient, permitting the stretching of the grid lines in the
near-leading and near-trailing edge regions of the blade section, where the velocity gradients are

large. In view of the above, the resulting grid on the (_l,l,tlJ)-plane, composed only of straight lines,

is generally skewed and stretched. In order to increase the generality of the solver and the accuracy
of the solution, avoiding at the same time complexities (such as patched grid techniques), an

additional body-fitted coordinate transformation is performed, which maps the (_l,tlJ)-plane to an

orthogonal (_,rl)-plane with square cells (see figure 2).
The resulting equation on W in the (_,_)-plane is discretized by use of second-order accurate

finite-difference/ finite volume centered schemes. The discrete equation is, then, linearized,
transfering all non-linear terms ((lnW) 2, for example) to the right hand side (fixed point algorithm).

The resulting system of algebraic equations, which has a 9-diagonal banded, non-symmetric
characteristic matrix, is solved iteratively using the MSIP (refs [13],[14]) method (incomplete L-U

approximate factorization procedure).
Once the velocity field is computed, the flow angle field is obtained integrating the ordinary

differential equations (10) or (11), along the iso-Cl,1 or the iso-tlJ lines. A fourth order Runge-Kutta
method is used during this step. In practice, equation (11) is first integrated along the cascade mean

streamline and the computed 13-mean streamline values are used as boundary conditions for the

integration of equation (10) along the iso-_l lines. This procedure involves only a tangential
derivation of the flow quantities along the blade and is, thus, more accurate. If a second order
normal derivation along the blade is used, then quadratic extrapolation procedures would be

required, decreasing the accuracy (mainly) in the sensitive leading edge region. The above procedure

provides the complete 15(_l,tlJ) field and, consequently, the blade coordinates.

THE COMPUTATIONAL ALGORITHM

A computational algorithm was constructed, outlined by the following steps (without

considering conditions for section closure, which will be examined later).
STEP1 : The exit plane flow quantities are calculated through equations (12) and (13). A value for

the integral F 1 is assumed and a velocity distribution for the pressure side compatible with the value
of the circulation F issued from equation (14) is established. The value of constant B is defined so

that * 1 is monotonic along streamlines. The values of the potential differences A* 1 1A and A* 11 C

are specified.
STE_ : A first approximation of the (_l,l,tlJ)-plane contour is considered and the boundary

conditions for the velocity (through equations (16) and (19)) and the angle (utilizing plausible angle

distributions), are specified. The interior grid points of the region (BCGF) are established using

a simple linear procedure. In the upstream (ABFE) and downstream (CDHG) regions, the points
on the boundaries are chosen and the grid is constructed, so that periodic conditions can be checked

without interpolation. The complete velocity and flow angle fields are initialized making use of the
values at the boundaries, through a linear interpolation. An initial estimate of (An) and R for each

node is made, as well.
LSTEP 3 • The coefficients Ai(i = 1,9) appearing in equation (9) are calculated.

4 • Equation (9) is solved for W(_l,tlI) using the numerical procedure and techniquej
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escribed in the previous section. At this point, an iterative procedure is performed involving the-]
revious step, that is, updating the values of the coefficients Ai. This updating is performed, utilizing '

the values of the velocity field of the previous iteration.

At the end of the computational procedure involved in this step, the values of W at the

periodic boundaries will have been updated along with the complete velocity field.
STEP 5 : The flow angle field _(Ol,llJ) is computed after numerical integration of equations (10)

and/or (l l) in the manner described in the previous section. During this procedure, new angle

values are computed at the boundaries, as well.
STEP 6 : The blade section shape 0=0(m) is computed using the following geometrical relations,

valid along a streamline

m _ cosl3ds -- m(s) (21)

sin[3
-- ds = 0(s)

R
(22)

Utiliring these relations, the values of m and 0 are computed along streamlines for the whole flow

field, as well. An interpolation procedure is used in order to estimate the new set of values R(m(s))

and An(m(s)), which will be used, along with the updated values of the angles.
The exit conditions are calculated at station (2), using the same procedure as in STEP1. The

integral F 1 is then computed and its new value is used to update F. The pressure side velocity
distribution is in turn modified in order to satisfy the new value of the circulation. The B constant
value is modified for the new geometry and velocity distribution. The boundaries and associated

conditions can then be established for a new (Ol,tlJ)-plane. A new grid is thus generated on the

(Ol,tlJ)-plane, moving along tlJ-lines and computing each time the value of ¢,1 corresponding to the

previously updated values of the velocity field.
STEP 7 : STEPS 3 to 6 are repeated until convergence is achieved.

As observed before, the blade section shape obtained from the above described

computational procedure is not necessarily closed.

RESULTS AND DISCUSSION

To validate the method stationary and rotating cascade reconstruction test cases were
selected. Exact cases were prefered where possible, while a direct solver was used to calculate the

"target", velocity distribution when the later was not analytically known. Inevitably, slight inaccuracies
in the results of the direct calculation method resulted in inaccuracies of the computed blade shape

by the inverse method. A complete outline of the test cases utilized for the validation of the method

are reported by Bonataki1151. Results for two analytical test cases and for a radial inflow turbine are

presented below.
In figure 3 the Gostelow [161 exact case (incompressible flow, compressor cascade) and in

figure 4 the Hobson I17] exact case (high Mach number, high turning angle, low pitch to chord ratio)
are presented to demonstrate the accuracy of the method. A radial inflow turbine case 1181(strong

variation of R(m), rotational, variation of An(m)) is presented in figure 5. In all three cases the
presented results include the initial blade shape, the corresponding suction and pressure side velocity

distribution and the blade shape provided by the inverse method. The typical number of grid points
utilized for the above calculations was (78x15) and the computing time needed for the complete

solution was 20 cpu seconds in an ALLIANT FX 80 computer.
As a next step the method was used for the design of new profiles. Starting from an arbitrary

suction and pressure side velocity distribution, a procedure was developed which in few iterations

provides a closed profile. This procedure is based on an extended investigation upon the parametersT
[_which influences the blade section shape I121'B51,an investigation which has pointed out that the ratio
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of pressure to suction side arc length and the pitch to chord ratio could control blade section
closure. It was also observed that the velocity distribution near the blade section edges influences

a small part of the blade shape near these edges, while the blade thickness is directly related to the
mean value of the velocity distributions along both the pressure and suction sides 112]. Using the

information provided by the above investigation new profiles were designed.

A rotating turbine cascade lying on a conical surface along with the "target" velocity

distribution is presented in figure 6.
In figure 7 a turbine blade is presented, which was used as the starting point for the design

of a thicker blade. This new blade was obtained by increasing the level of the suction and pressure
side velocity distributions while retaining the same inlet and outlet flow conditions. This particular

design is quite revealing, since the "target" velocity was obtained by modifying the original one in
such a way, so that the maximum velocity along the blade surfaces was not increased.

The blade section shape of a radial inflow turbine with speed of rotation is presented in

figure 8a along with the corresponding R(m) and An(m) distributions (figures 8c,8d) and "target"

velocity distribution (figure 8b). This is a typical case where the classical (,l_,tlJ) plane definition fails
and this is demonstrated in figures 8e,8f where the (,l,l,tlJ)-plane is plotted for two different values

of the B parameter, B--0 (the classical _ definition) and B= 1.1 (the modified definition). It is
evident that the modified definition suits better to the specific case.

CONCLUSIONS

A new inverse inviscid method for designing stationary or rotating, plane or axisymmetric

cascades was presented in this paper.
Compared with previous efforts, the new method may handle cascades rotating with high

speed and provide closed blade shapes in few external iterations.
The formulation and the numerics of the corresponding inverse method were discussed, in

order to distinguish it from similar methods and reveal its relative merits.

Finally, some calculation results were presented, to certify the accuracy and the capabilities

of the present effort.
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r A PC-BASED INVERSE DESIGN METHOD FOR RADIAL AND MIXED FLOg' ]
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h'ar Helge Skoe
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1. ABSTRACT

An Inverse Design Method suitable for radial and mixed flow turbomachinery is presented. The
codes is based on the 'Streamline Cun'amre Concept' and is therefore applicable for current PC's from

the 286/287- range.

In addition to the imposed aerodynamic constraints,

mechanical constraints are imposed during the design process to ensure that the resulting geometr3'

satisfies production considerations and that structural considerations are taken into account.
By the use of Bezier Curves in the geometric modelling, the same subroutine is used to prepare

input for both aero & structural files since it is important to ensure that the geometric data is identical

to both structural analysis and production.

To illustrate the method a Mixed How Turbine Design is shown.
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2. INTRODUCTION

The objective of this paper is to present an inverse design method which can be used on

ordinary PC's.

Since the conventional design process for centrifugal and mixed flow turbomachines is an iterative one,
with successive changes to the input geometry subjected to the flow analysis, it is evident that the aero-

design process takes considerable time. It can therefore be tempting to apply inverse design principles

to ensure that, at the end of a computational task, the resulting geometry satisfies predetermined aero-
restraints.

The method described is an 'engineering' approach to the inverse design problem where both

L aerodynamic and mechanical criteria are imposed. J
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For rotors of radial and mixed flow design, the shroud line aerodynamics is considered the most

critical aerodynamically. In the present method the shroud line aerodynamics are 'imposed' and the
three-dimensional geometry is evaluated under mechanical constraints dictated by structural and

production considerations.
A novel exducer geometry, featuring 'Balanced Work Extraction' is part of the design

procedure for Radial/Mixed How Turbines.
The complete 3-D Geometry of the rotor is generated in the Inverse Design method. Through

extensive use of 'Bezier Curves' in the geometric modelling the same subroutine performs the

'meshing' for the FEM-analysis and prepares the input files for the structural analysis in NASTRAN

FEM-system, as well as the geometry definition for production.

3. ANALYSIS

The flow equations, in the form presented here, is a Quasi 3-D ,inviscid approach to the Navier Stokes

Equations. The viscous effect, however is included in an approximate way by including the Entropy
term in the equations. The spanwise and streamwise effect of losses are simulated by applying a

Polytropic Efficiency, which is allowed to vary spanwise.
The basis of the quasi-three- dimensional flow analysis is the division of the flow field into two

types of two-dimensional surfaces, as shown in Fig.l, from Ref. 1. The $2 surface, which describes an
'average' meridional flow is governed by the meridional flow equations is described below,while the

S1, or blade to blade flow is handled in chapter 3.2.
The terminology is 'commonpractice' in turbomachinery, illustrated on Fig. 2 & 3.

3.1 THE MERIDIONAL FLOW

The meridional Equilibrium Equations has been applied to Hydraulic Francis Turbine Design since early
in this century. Applied to Axial How Turbomachinery, the equations are termed The Radial

Equilibrium Equations. These two forms of the Equations are treated in numerous reports from the last
sever_ decades, and for detailed information they are referred to the in Ref. 1,2 & 3.

In the following chapter a short description of the equations is given, explaining how they are

integrated into the procedure.
The meridional flow equation takes the following form

(1)

where the two terms F and G contain thermodynamic and geomellic elements which are dependent on
the flow solution itself. Hence an iterative solution is required.If the l-direction Fig. 2 is normal to the

meridional streamline in a vaneless region the terms in Eq. (1) simplifies to:

e-_A-&,as
R,c,a 

L

d(R* V') _2. d//+I,(2,H_V_,_/G=2*-_- * d/ d/ Cp
(3)
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Since, in the general case, the mefidional streamline location is unknown, it is convenient to fix most

of the calculation 'stations" a__ "quasiorthogonals' for the iterative flow calculation process. (Ref.3.l

while for the rotor trailing edge the code is required to handle curved calculation station.

The soludon of Eg. 1 is performed by Direct Integration

f F.dll.[e - f a.e, -t f V'dlt*d5

..2 JF._ I r.,_ r_ Ir.,_ .,
= gm,h_*e -e _ *jLr*e" *at

where the integration is performed from hub to the streamlin in question.

The constant of integration is set by the continuity equation:

*-- f 2*_'R*V_*c°s(6)*P*'r*Ce*dI
hab

(4.b)

(7

where the angle (Fig.2)

8 =_-y

the blade blockage (when inside bladerows)

x =2 *n ,R-Zt, *t o

and the

effects

(6)

(7)

Discharge Coefficient C a is basically sized to take care of boundary laver displacements

3.2. BLADE TO BLADE FLOW

The aerodynamic blade loading can be derived by relating the change of moment of momentum for

a flow-filament to the torque exerted by the pressure difference blade-to-blade (Fig.2)

dP,Zb ,dn.dm,R = d_; • a(R.v,) ,din (8)
dm

The filament massflow can be expressed as

dW=2 *n *R* V_* o *dn (9)

If the assumption (to be revised below) is made,that the flow is incompressible and linear blade-to-

blade, the following expression relates the velocity difference to the pressure difference
1

L
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By introducing this expression together with equation (9) into equation (8), an approximate expression

for the suction side velocity can be formulated

w=--_+A w:_' +_.v". d(R, v)
Zb W dm

(111

By means of the relative flow angle definition

=atccos(VdW) (12)

equation (11) can be rearranged to give an approximate expression for the Suction Side Velocity

v _ d(R. v)y=- cos(-_(" -/+) ,cos([3), T (la)

In our iterative design procedure we use the above mentioned linear approximation only in the first
iteration. For the subsequent iterations

+ 2W =IV= A1 *Opn,h+B1 _0_ h (14)

and the two constants, A1 & B1, are evaluated so that, with compressibilit2,' Eq.(8)is satisfied. By
integrating the massflow density blade-to-blade input for Eq. (5) is evaluated and the difference between
the SI flow surface, and the blade surface is determined.

The above formulation is similar to the SFC-concept (Stream-Function- Coordinate t

method described by Professor G.S.Dulikavich in Ref.5, however, less ambiguous due to the intended
use of a PC. For the blade to blade solution

there are three areas of major concern, namely the blade inlet, the blade exit, and splitter if present.
Blade Inlet

Since for radial and mixed flow turbomachinery we are normally dealing with high solidity blades in
the rotors a "channel flow' approach gives reasonable results (Ref. 1 & 4). For our Mixed flow turbine

we selected an 'optimum' inlet blade angle by setting the 'slipfactor'=.85 in the following relation

p_,t =arctan(1 1-¢,tan(_))

V. (15)

where _p=v= is Flow Coefficient, la=/shppfactor /
U

L

Blade Exit

In our mixed flow turbine rotor, where the flow is close to axial, the 'Cutta Condition' implies

(when transonic effects are excluded) that the aerodynamic bladeloading is zero at the trailing edge,
which is reflected by introducing zero gradient in the imposed (R*V,) at the trailing edge. The
difference between the S1 and blade average pitch must be corrected according to some deviation
'rules' based on experimental evidence.

Splitter blades

In our design method we must be capable of determining the position of rotor splitter blades

for an imposed optimised suction side velocity.lt should be evident from the above eqation (13) that
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V
the splitter blade must be 'unloaded' to leave a smooth suction side velocity on the neighbouring

'mainblade'.

3.3. FORMULATION OF THE INVERSE DESIGN PROCEDURE.

A practical turbomachine design system must meet both

-aerodynamic

-structural (stress,vibration,cyclic load e.t.c)

-and geometric constraints imposed by the method of producing.
Since none of these requirements are secondary, they are handled in three different chapters.

3.3.1. THE AERO-PART OF THE INVERSE DESIGN.

In the aero-design of turbomachines the shroudline suction side relative velocity is considered

the most critical part of the towpath, regarding the boundary layer behaviour . This suction side

velocity can be controlled by the distribution of the following parameters.
Since the suction side velocity cannot be 'dictated' for the whole 3-D geometry for a practical rotor

"7

design (Ref.6) the rest of the towpath is defined from mechanical constraints. Also the Rotor Exit Flow

Quality is imposed to enhance the suceeding diffusor performance.

Based on the anticipated gradient in efficiency from hub to shroud, the required temperature gradient

at rotor exit is determined by Eq. (16)
With the assumption of Axisymetric Stream Surfaces (Chapter 3)

Tr.,,,,,
(16)

1

the Euler turbomacltinery equation is applied along the meridional streamline

Tlt,_t¢t_t- Tn_tr tnttt=_ *[R* V,,m_,,ant-R. V,,_,, l,att] (17)

The novel exducer configuration with slanted trailing edge shown on Fig.3 & 8, allows controlled

rotor exit bladeangles without violating structural considerations.
To ensure the performance (total-to-static) above conventional turbine designs a conical diffusor with

'centerbody' is required (Fig.5) since strong 'counterswirl' near hub results from the design.

The Inverse Design Procedure to be implemented consists of the following steps:
a) Define a 'first guess' meridional towpath 'Grid'.

b) From estimated efficiency the streamwise distribution of (R'V,) is determined including rotor

exit (Equation (16)&(17).

J
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b

c) Impose a Smooth Meridional Velocity field in the grid. The value of the imposed meridional
velocity along the shroud, together with the the (R*V,) disvibution, determine the 'Critical' shroudline
suction side velocity according to Eq .(13)

d) Evaluate the F- and G- terms of equation 2 & 3.

e) Integrate equation (1) (Eq.(4)), with the constant of integration is set by the imposed shroud
meridional velocity.

f) Integrate RHS of Equation (5) with the velocity resulting from e) above. Correct ,with

a relaxation factor,the meridional streamline position according to the integrated massflow fraction. The
lack of continuity dictates how the meridional towpath is altered during the iterations. In other words,

the rotor hub, (or shroud) is allowed to 'migrate' during the convergence to satisfy the continuity
equation (ultimately).

g)Impose the 'Mechanical Constraints' (To be defined in

section 3.3.2 & 3.3.3 below) .The characteristics of the blade depends on the S1 surface which is
determined by integrating the relative flow angle:

(18)

The S1 surface/blade surface relations were mentioned under 3.2 above. The polar angle derivative
along the integration path for Eq 1 is required to evaluate the Bladeforce Term.

h) Special attention is required for the rotor exit, where the air angle is dictated from the

requirement of a prescribed (R*V.) , according to Eq 16 & 17, due to the imposed total pressure.
Depending on the mechanical restriction the trailing edge may have to 'migrate' during the design

process.

i) With revised flowfield information the F- and G- terms in eq.1 is updated, and the
computational procedure returns to e) above.

This process continues until some criterion of convergence is satisfied.

3.3.2. STRUCTURAL CONSIDERATIONS

The total structural life criteria cannot be analyzed during a PC- based inverse design procedure, since

rather complex FEM- analysis is required.To ensure that the 'first guess' of the aero-defined blade

respect some basic stress criteria (Creep e.t.c) a simple 2-D stress model can be performed during the

inverse design. When second order terms are neglected the following equations applies for the
maximum radial Stress near hub

1
f 8q +/_ Ma_. 1 (19)

where the centrifugal force and bending to be integrated (Eq. 20 & 21) are

8o,=0u,_n.t*te* _2*R (20)

L J
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H_

Mx,,: f 6c/*R*(O-OH_ *d'R
Shroud

(21)

and the second moment of inertia of the hub section (Eq. 22) is

i_ 1 *t 3
= "_ e,tlxb

(22)

This analysis require little additional code and can be performd during the inverse design procedure.

For our Mixed Flow turbine rotor geometry,this integration was performed in 'Section B-B' and in
'Section A-A' to determine a tangential blade thickness ratio compatible with the materials creep life

data. Equation (19) can be solved 'inversely' and the resulting 'constant creeplife blade' results in a

'Eifel Tower' blade shapes of the type seen in Fig.8. For critical designs like this radial turbine and

centrifugal compressor of Ref.ll, is vital that the structural analysis is performad with the same
geometry as the geometry defined for production.The geometry definition of radial and mixed flow

rotors is a typical case for 'special purpose' software, and it is logical that the aerodesigner prepare

the complete geometry definition files for the FEM-program input, as illustrated on Fig.8. These

geomtries are defined in the same subroutine with the constants determined in the designprosess. In
subsequent structural analysis temperature, heat transfer cefficient e.t.c must be added.

3.3.3. GEOMETRIC CONSTRAINTS DUE TO PRODUCTION.

It is important that the 3-D blade geometry which is output of the inverse design is compatible with

an available/economic production method. The two manufacturing methods which is common for radial
and mixed flow turbomachines is Flank Milling and Casting.

For the Production of Castings, there is a close connection between the requested thickness

distribution, material quality requirement and scrapprate. Due to this the relative thickness ratio for the

tip vary with size .As a consequence the optimum bladenumber reduces, and the meridional towpath
length increase with reduced size to conserve the aerodynamic blade loading, Eq .8, 13, Fig. 9. Ref. 14

The 'Cold Rig' version of the mixed Flow Turbine in question has been 'Flank milled' in a

5-Axis Controlled Milling Machine. Further 'Flank milling' is a candidate for the production of the
forms for 'Lost Vax' casting process and it is a good method for high performance Centrifugal

compressors with transonic inducers.

The 'Flank Milling' production process is illustrated on Fig. 3, where it can be shown that the
production process will impose mechanical constraints on the blade geometry in the direction of the
'Cutter Centerline'.

The blade surface definition, and the machining process is illustrated on Fig.3,Section C-C, which is

seen normal to the cutter centerline for one particular position along the 'Cutter Path'.

Since ,in the general case, a rotor blade is 'twisted' from hub to shroud, it is evident that the cutter
direction (In woorkpice Coordinates) are different at shroud and 'near hub'. As a consequence, the

contact line of the cutter spans an angle from hub to shroud and the blade surface are 'undercut'

compared to the stright line a) to b). The deviation from this generatix half way from hub to shroud
is close to

t_
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"- _C_t_r *[1 -C, OS(.5 *(_/:fl_-_Sh_i_l) ]
(23)

where the bladeangles is taken in a plane normal to the Cutter Centerline.

For the Mixed flow Turbine, and for compressors as shown on Fig.9 & 10(Ref.11), undercutt can be

comnpensated for when defining the blade for FEM-analysis by using a slightly different 'Cutter 'Path'
for the geometry definition as compared to the 'Cutter Path' defined for machining.

The rather obvious requirement that a practical cutter has to pass between the blades to be machined

does put restraints on the selectioon of number of blades and possition of splitters.

4. RESULT OF THE INVERSE DESIGN

4.1. A Mixed Flow Turbine

The presented design method has been utilized, during the development period, for several

turbomachines from the Centrifugal Compressor for an 'Ultra Small Jet Engine' in 1988,Ref. 14, Fig
9, to the Radial Inflow Turbine currently in the design phase Fig.8.

The mixed flow turbine used to illustrate the inverse design method, Figs. 3 to 7, was designed for a
Total to Static Pressure ratio of 2.05.

For the particular spool a high rpm was required due to the Compressor Efficiency , size, and cost.
Applying typical 'turbocharger turbine geometry' would result in low total-to-static efficiency (Ref. 8

& 12), consequently a mixed flow turbine was designed for this application. Fig.5 shows the turbine

rig which has been designed by ARTI in Praha, and Fig. 4 shows a photo of the turbine rig rotor,

'Flank Milled' at ARTI. The rig is currently in the manufacturing process and 'Cold Rig' tests are
scheduled later this year.

Due to the combination of conical towpath and 'almost' radial element blades, some freedom exist

in the selection of rotor inlet tipspeed and 'Design Charts' for hydraulic Fransis Turbines could to a
certain degree be utilized.

A design procedure as described in 3.3.1 with the restriction of 'Flank Milling' was performed with
different combination of bladenumber and splitterlocation. The final design geometry shows the

meridionalvelocity profiles in Fig 5.3 and the relative machnumbers in Fig 5.4. By imposing a 'kink'
in the R*V_ distribution in the splitter blade trailing edge region, a quite uniform suction side

machnumber is obtainwd on the whole mainblade, and the deceleration near the trailing edge suction
side should give low boundary layer growth (Ref.13).

Since both meridional curvature and aerodynamic blade loading are drastically lower than for High

Pressure Ratio Radial Inflow Turbines the resulting 3-D effects, which is not taken care of in the quasi-

3-D formulation, should be moderate. It is, however evident that a reliable design procedure for this
type of turbines needs feedback from the 'real flow effect' regarding the deviation and loss

characteristics. Since the basic Quasi 3-D procedure when properly 'calibrated' for efficiency and

deviation, predict the static pressure along a compressor shroud as shown on Fig. 11, the same procedure
should apply for the lightly loaded turbine.

4.2. Computational Times:

The Computer code described has been used on computers ranging Homecomputer (Fig 1988) through

286/287 (for the Mixed Flow Turbine 90) to 486 type (Radial Inflow Turbine Fig .22 ,1991). It is
difficult to give 'honest' figures for the performance of the code for several reasons :

J
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-The code is seldom started from 'scratch'. Based on previous experience a tentative streamline

pattern and a tentative meridional velocity level can be estimated as a 'first guess'. This reduces tile
time for obtaining satisfactory convergence drastically.

-The grid required varies w_th the type ot task.

-The performance depends on how the computer is configured.
-An engineer seldom runs a program to the convergence level which a mathemathician would.

Comparison of several codes for turbomachinery flow analysis are given in Ref. 1.b) Since both

grid and computers vary a direct comparison is difficult. Since the basic characteristic of a streamline

is that both the first and second derivative (Slope & Curvature) is included in the information it is
logical that the gid can be quite coarsh for SC-procedure.

It would be a task for ICIDE to define a list of 2-D and 3-D turbomachinery geometries which

could be used to evaluate different methods, since several factors in addition to relaxation, grid size
and number of iterations affects the accuracy and time used.

For the 286/287 Mixed Flow Turbine Fig. 4 & 5,a total of 33 Meridional "stations" vere used.
The first 10 'stations' were used in the nozzles, which vere also inversly designed. In the rest of the

flowpath, 23 additional "stations" vere used, and 9 meridional streamlines vere used including hub &

shroud. This task took typically 50 minutes on the 286/287 Laptop.

For the design of a axial/radial diffuser similar to that on Fig. 5 a smaller grid had to be used

to include a simple boundary layer code (Ref. 13). For that design (not shown in this report) a optimum
boundary layer shape factor vere the basis for the geometry definition.

Currently the code is running under the Microsoft Professional Development System

7.1.(QuickBASIC Extended, which is a very convenient development environment). This allows the
DOS-barriere of 640 K to be broken by using EXTENDED or EXTANDED memory.. In this case a

simple 2-D boundary layer integration procedure (Ref. 13) can be included in the present code together

with a (35*9) meridional grid, at the 'cost' of a speed reduction of some 50ck compared to the 486

'640K-DOS speed',and typical CPU is 12 minutes for a Turbine shown on Fig.8.

5. REFERENCES

1. Advanced Topics in Turbomachinery Technology, Concepts ETI,Inc. Nor_'ich,VLUSA. 1986

a) Chapterl: R.M.Hearsey:2Practical Compressor Aerodynamic Design2.
b) Chapter 9: J.H.G. Howard:2Computational Methods for Quasi-Three-

Dimensional and Three-Dimensional Flow analysis and Design of Radial

Turbomachinery".

2. Novac,R. and Hearsy, R.M."A nearly 3-D intrablade computing system for turbomachinery"
Tran. ASME, J. Fluid Eng. March 1977,P.154

3. Katsanis, T,H:"Use of arbitary quasi-orthogonals for calculating flow distribution in the

meridional plane of a turbomachine"
NASA TN- D-2546

4. Stanitz,J.D, and Prian,V.D,"A Rapid Approximation Method forvDetermining Velocity

Distribution on Impeller Baldes of Centrifugal Compressors"NACA TN-
2421,1951.

5. von Karman Institute (v.K.I) Short Course on Inverse Design Methods.

Bruxelles ,May 1989

6. Zangeneh, M:"Therdimensional Design of a High Speed Radial Inflow Turbine by a Novel
Design Method". ASME 90-GT-235

/
OR;GINAL F/:_GE iS

OF POOR QUALITY



210

ThirdInmrnationalConferenceon Inver_DesignConceptsand Opummanon inEngine_cnngSciences

(]CIDE$-IU). Editor: G.S. Duligravich. Washington D.C.. Octo_r 23-25. !901

F
7. Wood, H.J. "Current technology of radial-inflow turbines

for compressible fluids"

Tran. of ASME, J. of Engineering for Power, Jan 1963. pp72-83

8. Roelik, H.E. "Analyttical Determination of Radial Inflow

Turbine Design Geometry, for Maximum Efficiency"
NASA THD-4384, 1978.

9. Rodgers,C:"High pressure ratio turbine design constraints"

vKI Lecture Series, Bruxelles 1987-7

10. OKAPU:"Mixed Flow Gas Generatore Turbine" vKl LS 1987-7,As above.

11. Mowill,R.J & Strom, S.,"An Advanced Radial-Component Industrial Turbine Engine"

ASME J of Eng. for Power.October 1983.Vo1.105/947.

12. Whitfield, A.:"The Preliminary, Design of Radial Inflow Turbines."

Tran. of ASME, Journal of Turbomachiner3', Jan 1990.

13. Albring,W. "Angewandte Str0mungslehre", Verlag Theodor Steinkopff.Dresden.GDR, 1970

14. l.H.Skoe, "Design of a Centrifugal Compressor for an Ultra Small Jet Engine". Presenlation

at the Norwegian Institute of Technology ,Trondheim, Norway,March 1989.

6. ACKNOVLEDGEMENT

The permission by R.J.Mowilt/MOWlLL TURBINMOTOR A/S to use the Mixed Flow Turbine Io

illustrate the use of the method is appreciated.

The enthusiastic Turbomachinery team at ART1 in Praha are acknovledged for the hardware efforts.

(Ref. Figs. 4 & 5)

- and especially my vife Gerd, for her patience with my "inverse" sparetime activity

-may the result be more sparetime !

7. FIGURES

L

S1 StreamSurface(I-2)

$2 StreamSurface(3-4)"-L

Figure 1. Stream Surfaces

Vm

/
C-t

Fig'are 2. Coordinate System Definition

1



211

Third lnmmauorml Conference on inverse Desig_n Concepts and Optimization in Engineenn.,t Sciences

(ICIDES-III_. Ed:'or: G,S. DuliL"avich. V,'_-shmemn D,C.. O=_e_r 3._-....<, 1991

F . /% ___

x

'id'

d2
,-%\ .

/ ,;2,,,'
• ', o
, v, -

; ,s$

!

Section B-B

_ Shz oud

e

/ ./,/
/ /,

cf

S4_ionB-B_largN

i ,

>r

,_,_"
,_¢

; .". T r
'.V/ 5"*_
UV/,, /1:/...,>.
. /'// ,, 11, ".'W2

.>:_,;---->-.->... . ;
:!;.; .::;> :f: ! >',..
t,:'>";''," " "
.s5-4,/_ ," - "
,.-.,5"//.. ,.. . "// ,

,,L.;" "" 4". / /. " _," " "
• j/.'/ ;.,,; "'.../ > .... ,
,'>_/<_.,,;<-'>;.,..>>7..,:;7.;.._<';-_....-.,... ;

Section A-A B ---- A -----

Cutler
Comaet

- __._,_<-:.._C//,,

_Jon C-C

l

Figure 3. Geometric Constraints for "Flank Millhg'

L

Figure 4. Mixed Flow Turbine Rig Rotor
('Flank Milled')

Figure 5. Turbine Rig
Meridional View

J



212

Third Intematiorta] Conference on Inver_ Design ConcepL_ and Opumtzation in Eng,neenng Scicnces

(]CIDES-IIII, Ed]tor G.S. DuliL'2vi;h, \\'a._hineton D.C.. O.;tober 23-25. _oo,

Vm/UT

0.5

0.0

i Legend Fig. 6

i

Legend Fig. 7

il _-- _elat:vm _chnu_ber
i

_e_$d$On&l Rotor Lp_Qth

-Sphtter Blade --

Trading Edge

<e --"

---.... __ ,_-' -__....

1.0

0.5

0.0

_ertdlo_al Rotor Length ¢

Figure 6. Meridiotml Velocity. Figure 7. Relative Maclmumbers

L

,.,.,.

T

' W
Figure 8. Radial Inflow Turbine

(with Rotor FEM-Mesking)

Figure 10.

High Pressure Ratio Compressor

(Reproduced from Ref. 1l)

7,.

Figure 9. Centrifugal Compressor

(Ref.14)

+ Test Points

L- Q-3D analysis,I

___ /Q.-
jI-"

......... _.,__ :,_....

' : " I ;, ,, , _,,_,.. ,.-;..;. _,; . ,'. ;. 1. ,'. ,. ,'.
I't£1ll_lOt_k IIOTO_ LrN(;¥N IX)

Figure 11. Comparison between Q-3D & Test

(Compressor Static Pressure)

4

1:3

]



213

Third International Conferenceon InverseDesign Concepts and Opum_uon in Engine._nng Sciences
TTT('ICIDES-_,_). Editor: G.S. Dulikr'a',,i:h. Washington D.C.. October '_a,_.__'_. looI..

N9 2 4
OPTIMAL DESIGN OF SOLIDIFICATION PROCESSES

Jonathan A. Dantzig and Daniel A. Tortorelli

,c?.
i

Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61801 USA

1: INTRODUCTION

An optimal design algorithm is presented for the analysis of general solidification processes, and is demon-

strated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the

prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The op-

timization uses traditional numerical programming techniques which require the evaluation of cost and constraint

functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification

problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demon-

strated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain

the desired temperature profile in the crystal, and hence to maximize the crystal's quality. A similar problem is

investigated by Dantzig and Chao [ I ], however their approach does not utilize numerical optimization techniques.

Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective

one-dimensional search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we

incorporate the conjugate gradient and Quasi-Newton methods for unconstrained problems[2]. The efficiency and

effectiveness of each algorithm is presented in the example problem.

We have chosen to adapt an existing commercially available finite element program, FIDAP [3], to compute

of the sensitivities, rather than develop a new code. Thus, we are in position to investigate larger and more

complicated problems in the future without significant code development. The explicit sensitivities are computed

analytically by the adjoint technique[4], which has been applied to nonlinear transient conduction problems by

Tortorelli et. al. [5]. Large computational savings and accurate calculations are realized by utilizing an explicit

approach as opposed to the costly and sometimes unreliable finite difference method [5, 6].

In the following section, a brief outline of the conjugate gradient and quasi-Newton methods for unconstrained

optimization are presented. In section 3, the adjoint sensitivity method is reviewed and presented in a specialized

form appropriate to the processing problem. An example problem is presented in the last section.
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2: METHODS OF ANALYSIS

L

2.1 Optimization Algorithms

Vanderplaats [2] presents an excellent exposition of the algorithms which have been developed to resolve

design optimization problems. The search method algorithms for unconstrained problems are characterized by

sequential searches in the design space to reduce the value of the objective function, G. Beginning at a specified

initial point in design space b, a line search is performed to find the minimum value of the objective in a

search direction, S. Once the minimum is found in this direction, the present design is updated and a new search

direction is chosen. This process is repeated until the design converges to its minimum objective function value.

In this section we will briefly outline three search methods for unconstrained optimization. The methods are

distinguished by the manner in which the sequence of search directions is determined.

Search methods which utilize derivatives of the objective function tend to be more efficient (i. e. will require

fewer iterations) than zero-order methods. This is true because the gradients suggest the direction one should

move in design space to reduce the value of the objective function. The sensitivity analyses, described in the

next section, provide this gradient information at relatively little additional cost beyond that which is required to

analyze the process and evaluate the objective function. Accordingly, the discussion here is limited to these first-

order gradient-based methods, specifically, the methods of steepest decent, Fletcher- Reeves conjugate gradient,

and the Quasi-Newton are described. The methods differ in the way that the search directions are determined.

Line searches are performed for all of the above-described algorithms. We are using a variant of Brent's

Method for this purpose[7]. In this technique, the objective function is assumed to vary quadratically with the

scalar o along the vector in design space given by b + aS. Thus, the problem becomes one of finding the value

of a corresponding to the minimum G. If G were truly quadratic in a, then a combination of three function

evaluations or derivatives with respect to a would suffice to obtain the minimum. In practice, G is generally

not quadratic in a, hence this technique requires repeated evaluations of G and its derivatives to determine the

minimum. In some cases, the parabolic interpolation can diverge. To circumvent this problem, Brent's Method

uses interval sectioning when divergence of the parabolic interpolation is detected.

Once the minimum for the given search direction is found, a new direction must be chosen. The most

simplistic algorithm uses the gradient to determine the new search direction, i. e.

S = -VG (1)

This "Method of Steepest Descent" has been shown to be inefficient [2]. Better algorithms utilize information

about previously searched directions to construct the next search vector. In the Fletcher-Reeves conjugate gradient

method, the new search direction is given by

IvG(t")l= s (2)
s, = -VC(b;)+ Ivc(t.-')l'

where b j is the design vector at the beginning of the j_ line search. Such a selection of the S ensures that

the search directions are Q-orthogonal. After several steps, it is possible that searching in direction Sj will not

improve the objective, and the process is then re- initialized with Equation (1).

In the Quasi-Newton methods for unconstrained minimization, we consider a Taylor series expansion of G

about the present design, bo.

G(b) _ G(bo) + VG. 15b + I_SbTH ./Sb (3)

J
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where H is the Hessian matrix, and _b = b - bo is the new search direction. Differcntiating this equation with

respect to the design variation and setting the result to zero (for the minimum) yields

ab = - H(bo)-_ VG(bo ) (4)

Rather than compute the Hessian inverse, which is usually difficult because it contains sccond-ordcr sensitivity

information, we construct a serics of approximations to H -_ from

(H-l) ' = I (5)

(H-') j+l = (H-') j + D j

where

Dj _ ab. _b (H-')J(H-')JT (6)

Sb.6(VG) a(VG)T(H -_)'_(VG)

This approximation to the Hessian inverse (Equation (5)) is then used with Equation (4) to determine the

appropriate design increment.

A more detailed discussion of these algorithms is given in Reference [2]. Clearly, the use of these algorithms

requires that the sensitivities be computed accurately, and because they are computed many times (once per

design iteration), they must also be computed efficiently. In the next section, an efficient algorithm is described

for obtaining the sensitivities after analyzing the original problem.

2.2 Explicit Design Sensitivity Analysis using an Adjoint Method

Tortorelli, et al.[5] described a Lagrange multiplier method for formulating the adjoint design sensitivities

for nonlinear transient thermal systems. The variation of a general design functional may be expressed in explicit

form with respect to variations in the prescribed boundary conditions. However, the design functional depends

on these explicit quantities and implicitly on the temperature field. To obtain the explicit sensitivities, the implicit

dependencY on the temperature field must be resolved.

The design functional is expressed as

G(b) = / f(T)dV + / g(T,b)dA (7)

B OB

where the temperature T(x,b) represents the implicit response fields in G, b is the vector of design parameters,

and the position vector is denoted by x. The design vector will be used to define the boundary conditions, which

ultimately control the values of all the response quantifies and G. All quantities are defined in the region B or on

the bounding surface OB (with outward unit normal vector n), and am assumed to be smooth enough to justify

the operations performed. Furthermore, differentiability of G with respect to the design is assumed.

The response quantities arc implicitly defined by the design and the following mixed boundary value problem

V-q+r=0 inB (8)

with boundary conditions

T = T P on AT

q" = qP(T,b) on Av

q" = h(T, b)(T - To_(b)) on Ah

(9)
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where q(x, b) is the heat flux vector, r(T, g, x, b) represents the temperature- and temperature gradient-dependem

internal heat generation, g(x, b) - VT(x, b) is the temperature gradient, q' - q • n is the surface heat flux,

and h(T, b) is a convective transport coefficient between the surface of the domain and the ambient temperature,

T_(b). At, Aq and Ah are complementary subsurfaces of OB and correspond to surfaces with prescribed tempera-

ture 7_', prescribed flux _, and prescribed convective boundary conditions, respectively. Note that the prescribed

flux, heat transfer coefficient and ambient temperature distribution are all functions of the design vector, b, and

the temperature to allow modeling of nonlinear heat flux and convective loads, as well as radiation. Note also

that the internal heat generation term may be used to model convective transport terms when fluid flow is present.

To complete the representation, a constitutive relation is introduced for the heat flux where _t is a general function

of the position, temperature and temperature gradient,

q = _l(x,T,g) (10)

We will follow a finite element formulation, where Equation (8) is written in weak form and the boundary

conditions in Equation (9) enter after integrating by parts and applying the divergence theorem.[8] First define

the weighted residual, R, as

R(T,b,A) - - / {VA.q- Ar}dV + / AqPdA + / Ah(T- Too)dA (11)

B Aq A_.

where A is a weighting function which will described in more detail below. We use a displacement approach, in

which the only dependent field is the temperature. Thus, Equations (9) and (I0) are strictly enfomed, and A = 0

on AT. When R is equal to zero (for all admissable A) then Equation (8) is satisfied.

In general, the nonlinear nature of the problem will require that Newton-Raphson iteration be performed to

find the zero of the residual. We introduce a truncated Taylor series expansion to update the temperature field
from 74 at iteration I to Tt+l at iteration I+1:

R(T l,b,A) + {
RI+I

where AT = T t+l -T 1 and

OR(T',b,a)}OT AT = 0
(12)

OR(T', b, A) 0_ (AT) + "
aT AT = - f {VA " u- VA. _V(AT) - AoIAr__Or _ ,_0_V(AT)}dV+

z (13)

/ A Oq" ,, _ . h] A TdA"_l da + f _[_T(T- Too) +
Aq A_

In finite element analyses, R and _ form the residual vector and tangent stiffness matrix, respectively. The

incremental problem given in Equation (12) is solved iteratively until the solution converges.

As we described earlier, changes in b affect the boundary conditions, which in turn affect the response

quantities, which ultimately alter the value of the response functional G. The objective of sensitivity analysis

then. is to derive an explicit expression for VG in which only variations of the design parameters 6b, are present.

In the Lagrange multiplier method for the adjoint sensitivity analysis, the residual is adjoined to G to define

an augmented functional G',

G" = f fdV + f gdA- f (VA.et- r)AdW + / M.dA + f Ah(T- T_)dA (14)

B 0B' B Aq AA

L J
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This ensures that the governing equations are satisfied. In this equation, A can be interpreted as a Lagrange

multiplier, which will eventually be identified as the temperature field of a second, fictitious adjoint problem

defined over B. Note that since the augmented term and its derivative are both identically zero, G" = G and

VG" = VG.

Formal differentiation of Equation (14) with respect to the design vector gives

.._ = -_ -_ a v + -_ + _-_ -_ ] d A -
B OB

/ ( OqOT O_IOVT . OrOT AOrOVT'_VA'O-7 0--6 + VA Og Ob A_-_ _ Og _ /
B

/.,(ro,,o,-,
A_

dV + A _-.ff-_-ff_ + dA +

Aq

(15)

With the exception of A and the implicit terms involving the derivatives of T and VT with respect to b, all of

the terms in Equation (15) are known once the original analysis problem is solved. In the sensitivity analysis,

we will eliminate the implicit terms by a particular choice of the Lagrange multiplier A.

To this end, we separate VG" into terms which explicit quantities, VG_:, and those which are implicit

quantitiesVG% where

/Og dA [ A Oqp-._ + ] --_dA + / A(o_(T- Too)- h-_)dA
V G'E

,1

OB A, A,

(16)

and
Lq..C.Z
• T _b

i�°'.'-i""..iVG} = .-_.-_av + -_-_a,a -
OB

V_. 0-_ 0--b + VA. 0g 0b
B

f Oqv OT Oh OT OTA-_-_dA + f A(-ff-f-ffg(T- Tco) + h-ffg)dA
A, A_,

A Or OT OrOVT\ _ (17)

)dv+

where g-_ = 0 on AT. On examination of Equation (17) and Equations (8) and (9) we note that the implicit term

can be annihilated by solving the following adjoint problem: Find that value of A for which

OG OR(T, b, A) aT
OT OT Ob

(18)

for all admissible ._. Note that _ is the indicated quantity in Equation (17). This equation is linear in A, and

is the adjoint operator for the incremental problem (Equation (12)). This allows us to solve the adjoint problem

efficiently when the finite element method,is used.

Indeed, after solving the original problem with Newton-Raphson iteration, we next store the final decomposed
OG

tangent stiffness matrix. Then the adjoint load vector (_) is formed which corresponds to the following adjoint

L 1
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loads:

of
r_=_- T inB

A=O OnAT

Og
q_ = _ on Aq

Oh ) Ogq'_ = -O-f ( T- T°_) + h )' +-Of on ah

(19)

Finally, we perform a back substitution on the transpose (adjoint) of the decomposed stiffness matrix to evaluate

A. Once A is determined, then VG7 = 0 and the sensitivities are obtained directly from Equation (16). The

efficiency of this method lies in the fact that a single back-substitution into the already decomposed stiffness

matrix, followed by substitution in Equation (16), yields all of the components of the sensitivity vector. In

general, the solution of the primal problem requires several Newton-Raphson iterations. Hence, the added cost

of evaluating the sensitivities is relatively small.

In the finite element evaluation of the adjoint load vector and VG_:, the same numerical quadrature is used as

that used to evaluate G, the tangent stiffness matrix and residual. This ensures that consistent results are obtained.

In the next section, these methods will be used in an example problem concerning Bridgman crystal growth.

3: APPLICATION TO A CRYSTAL GROWTH PROCESS

3.1 Bridgman Crystal Growth

When crystals for electronics applications are grown using the Bridgman process, the finished bulk crystals

are sliced into thin wafers perpendicular to the growth direction. Electronic devices are then fabricated on these

wafers. The properties of the devices are highly dependent on the degree of perfection and compositions of

the wafer. Since these attributes are set during growth of the crystal, control of the growth process is vital.

In particular, fluid flow in the melt during solidification can interact with the solute field near the crystal-melt

interface to adversely affect the chemical composition of the crystal.[9] The primary means for controlling the

convective flow is to control the shape of the crystal-melt interface, which may be accomplished by defining
appropriate process parameters.

The latest generation of Bridgman fumaces are divided into several independent heating zones along their

length, so that complex temperature distributions can be applied. While this gives these furnaces great flexibility,

it also necessitates that detailed analyses be performed to relate the temperatures imposed on the furnace wall to

the temperature distribution produced in the crystal.

Using the techniques described in the preceding sections, a model is presented for determining the optimal

temperature distribution to impose on the furnace wall to produce the desired temperature distribution in the crystal.

In particular, the desired temperature distribution in the crystal becomes the objective, and the temperatures on

the furnace wall comprise the design parameters. In our example problem, the furnace to be examined is one

that will be used in low gravity space processing.

A configuration proposed by researchers at GTE for growing GaAs crystals in space is illustrated in Figure

1.[10] Inthe proposed experiment, a round pyrolytic boron nitride crucible with graphite end plugs and a quartz

bottom is used to contain a GaAs charge. The entire container is to be filled on earth, then sent into space, where it

will be placed in a programmable gradient furnace, melted and resolidified in a controlled manner. The geometry

l J
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Fig. 1: Schematic view of the model for the proposed experiment to grow GaAs
crystals, and corresponding finite element mesh containing 1216 nodes and 1230 elements.

of the experimental apparatus was exploited to describe the process using a two-dimensional axisymmetric finite

element model. It will be assumed that the ampoule is maintained with its axis parallel to the gravity vector.

The commercial code FIDAP[3], with modifications to enable the design sensitivities to be calculated, was

used for the analysis. The container and melt were modeled using four-noded linear isoparametric elements,

whereas the presence of the furnace wall was represented by a specified temperature distribution exchanging heat

by radiation with the exterior surface of the ampoule. Further details of the radiation calculation are given below.

The governing equations and boundary conditions for these types of problems are well established[11], and

are reproduced here only to the extent necessary for the present discussion. In addition to the energy balance

equation, we must consider the momentum balance equation to model buoyancy-driven convection in the crystal.

The density was assumed to be constant, except for thermal expansion in the liquid phase, which is included by

the Boussinesq approximation. With this assumption, the steady form of the momentum balance equation is

po(u-v.) = -vp + ,,V2u + pogo(1-/3(T - T,.s)) (20)

where u is the velocity, p is the pressure, ,u is the dynamic viscosity, go is the gravity vector,/3 is the volumetric

thermal expansion coefficient, and T,¢ is the temperature at which the density is po (in this case, the melting

temperature). Note that the presence of the buoyancy term couples the momentum balance equations to the

energy balance equation. There is no slip of the liquid past the solid, so that the velocity of the fluid is zero

at all of the boundaries of the melt.

The steady form of the energy balance equation, adopting Fourier's Law (/t = -k(x, T)g) for the constitutive

relation for heat flux, is given by

poc_(u • VT) = V. (kVT) (21)

where cp is the specific heat and k is the temperature dependent thermal conductivity. The advection term on
the left-hand side of this equation defines the internal heat generation term, r, noted above. Heat is conserved

at the crystal-melt interface, requiring that

ksVT, • n - ktVTt • n = 0 (22)

where n is a unit vector normal to the interface and the subscripts l and s refer to the liquid and solid phases,

respectively. For very dilute alloys, the interface temperature can be assumed to be the melting temperature of

the parent phase, denoted Tin.

/ j
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Even though the problem is steady, latent heat can be convected by the fluid flow in the melt. Latent heat

evolution was included in the model using an enthalpy-specific heat method.t12] This method requires that the

enthalpy of solidification be spread over a range of temperatures, and in all of the simulations which follow, this

interval was chosen to be 1K. The specific heat was computed from the gradients of enthalpy and temperature
at each element integration point

eV_T T • VHCv = VT (23)

and assembled using a lumped mass matrix formulation. These formulations ensure that the entire heat content

of the material is accounted for in a computationally efficient way.t12]

The ends of the ampoule were considered to be insulated. Heat was transferred between the ampoule and the

furnace wall by radiation only. The ampoule was assumed to fit closely in the furnace, so that radiation exchange

was limited to opposing faces in the furnace, i.e. no view factor calculations were required. The Stefan-Boltzmann

law was factored, so that a nonlinear convection coefficient, h,ff, was defined for each integration point

qrad O'g (T 4 4

2
= ae(T _ + T_.,,_¢_)(T + Tf_ .... _)(T - Tj .... _)

h,ll

(24)

For all cases, the emissivity was taken to be constant at 0.7. The material properties used in the simulations
are given in the Appendix.

Pressure was eliminated as a degree of freedom using a penalty method.[13] In this formulation, the continuity

equation for an incompressible fluid is modified to allow an artificial compressibility, so that

V. u = -¢vP (25)

where _v is a penalty parameter, taken to be lxl0 -s in all cases. The resulting coupled nonlinear equations for

the velocities and temperatures were resolved at each time step by Newton-Raphson iteration or by successive

substitution. Convergence was declared when both the rms change in each field variable and the residual errors

in the finite element equations fell below Ixl0 -3.

The temperature distribution for a constant temperature gradient of 5 K/mm along the furnace wall was

known to produce significant undesirable curvature of the crystal-melt interface.[1] The primary reason for is

the variation in thermal conductivity between the liquid and solid. Thus, a constant temperature gradient results

in unequal heat fluxes at the interface. (See Equation (22).) To alleviate this problem, the temperatures applied

along the furnace wall will be adjusted to produce a specified temperature distribution within the crystal. The

procedures developed in the previous sections were used for this purpose.

3.2 Implementation of Design Sensitivity Analysis

The commercial finite element code FIDAP[3] was modified to perform the adjoint load and sensitivity

calculations described in the previous section. The sensitivity calculations neglected the fluid velocities and

the coupling to the momentum equations. However, the optimization still converged in an acceptable number of

iterations because the problemis dominated by the thermal aspects. A shell program was then written to coordinate

1 J
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Fig. 2: Schematic of link between conjugate gradient search algorithm and FIDAP.

the nonlinear heat transfer analysis, the sensitivity analysis, and the numerical optimization. A schematic diagram

showing the derails of the interface between the shell program and FIDAP is shown in Figure 2.

The file _ljoint.loads in Figure 2 contained the information describing the desired mmperamre profile, T(z),
to be attained in the ampoule. This disu-ibufion was specified on both the center-line and the outer radius of the

crystal (inner radius of the ampoule). The objective function was then defined as the error between the desired

and computed temperatures at N discrete points

N

G = E (Ti- Ti) 2 (26)
i=I

Thus, G represents the function to be minimized.

The only design variables allowed in the problem were the fumace wall temperatures, Too(z). Note, however,

that in view of Equation (24) there is an implicit dependence of the heat transfer coefficients on Too(z) which
must be accounted for.

The progress of the optimization is illustrated in Figures 3 - 5. It is easy to see that the march through the

design space converges quickly to the optimal solution. For this case, the ambient temperature at each position

on the furnace wall opposite each surface node on the ampoule comprised the 76 design variables. The fact

that there are so many design degrees of freedom leads to the unrealistic fluctuations seen in the fumace wall

temperature profile.

This same case was then modeled using nine zones to span the entire length of the furnace. The ten specified

wall temperatures represent the design parameters, and the intermediate wall temperatures were determined via

linear interpolation. The results for this case are shown in Figure 6. It can be seen that equivalent results are

obtained for the internal temperature. It is interesting to note, however, that the results for the latter case are not

simply an average of the results from the former.

Notice that in all of these cases, the sudden changes in slope in the objective function led to sharp changes in

the furnace wall temperature profile and that the ampoule temperature was unable to capture the sudden change.

Accordingly, a new objective function was defined which maintained the discontinuity in slopes at the crystal-melt

L _j
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4: Progress of the furnace temperature profiles during the optimtzation

interface, and rolled off exponentially with distance from the interface. The results, shown in Figure 7, illustrate

that one may attain the final objective, if the physics of the problem allows it. This is the nature of optimization,

where existence and uniqueness of solutions is not always guaranteed.

For each case, the progress through the numerical optimization was very similar. Five to ten line searches

were required, with six to eight function evaluations along each line. This latter number was found to be very

sensitive to the convergence tolerance for the parabolic interpolation. Setting the tolerance below 0.01 resulted

in many more function evaluations with no improvement in the overall results. The problems ran to completion
in about one hour on a Sun SPARCstation 1+.

A quasi-Newton method was also used, but for this problem the results were almost identical. The quasi-

Newton procedure typically required one more line search than the conjugate gradient method, but there were

not enough tests done to draw any definitive conclusions.

I 1
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6: Comparison of optimal solutions using 10 and 76 heating zones, respectively.

4: CONCLUSIONS

The results of the preceding section indicate the practicality of optimal process design and the utility of the

sensitivity analysis for this class of problems. The optimal solution can be found with little user intervention.

Indeed, the only work required beyond that for the normal analysis is the definition of the design variables and

objective function.

In the future, we would like to extend this work to consider transient problems. However, the analysis becomes

more complicated because the transient problem requires a convolution integral to be evaluated in the adjoint

method. Other methods, such as direct differentiation, may prove to be more efficient for this class of problems.

The sensitivity formulation used for this work did not include the advective terms in the governing equations,

and the fluid velocities were also not considered in evaluating the implicit variations of G. This will be important

for advection-dominated flows, and this work is in progress.
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Fig. 7: Optimal furnace wall and ampoule temperature profiles for exponential variation in the objective function
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Appendix A: Material Properties Used in the Simulations

Tnhle I" Mnlerial nrc_.r-,e.r"de,_w_ecl in the eimnlnticm_
Material Quartz. Air Graphite PBN - 1 PBN - 2 GaAs

Density (g/mm 3)

2.2 x 10 .3 2.35 x 10 .7 1.83 x 10 .3 1.9 x 10 .3 1.9 x 10 .3 5.71 x 10 .3

Thermal Conductivity (W/mmK)

273 K 3.4 x 10 -4 1.15 x 10 .5 3.0 x 10 .2 2.50 x 10 .2 4.0 x 10-4 1.7 x 10 .3

750 K 4.7 x 10-4 1.43 x 10 .5 2.27 x 10 .2 1.70 x 10 .2 5.0 x 10-4 1.7 x 10 .3

1060 K 6.6 x 10-4 1.88 x 10 .5 1.78 x 10 .2 1.58 x 10 .2 5.6 x 10-4 1.7 x I0 3

1220 K 7.5 x 10-4 2.02 x 10 .5 1.52 x 10 .2 1.51 x 10 .2 6.0 x 10-4 1.7 x 10 .3

1511 K 7.5 x 10-4 2.24 x 10 .5 1.29 x 10 .2 1.50 x 10 .2 6.0 x 10-4 1.7 x 10 .3

1512 K 7.5 x 10-4 2.24 x 10 .5 1.29 x 10 .2 1.50 x 10 .2 6.0 x 10-4 3.5 x t0 .3

16130 K 7.5 x 10 -4 2.30 x 10 .5 1.24 x 10 .2 1.50 x 10 .2 6.0 x 10 -4 3.5 x 10 .3

Specific Heat (J/gK) Enthalpy (J/g)

273 K 0.123 0.294 0.19 0.20 0.20 27.4

750 K 0.244 0.294 0.19 0.40 0.40 75.4

1060 K 0.278 0.294 0.19 0.44 0.44 106.5

1220 K 0.284 0.294 0.19 0.47 0.47 122.6

1511 K 0.299 0.294 0.19 0.47 0.47 151.8

1512 K 0.299 0.294 0.19 0.47 0.47 325.5

1600 K 0.299 0.294 0.19 0.47 0.47 575.5

Viscosity (g/mm s)

<1511 K 1.0 x 1020

>1512 K 1.7 x 10 .3
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ABSTRACT

An explicit and unconditionally stable finite difference method for the solution

of the transient inverse heat conduction problem in a semi-infinite or finite

slab mediums subject to nonlinear radiation boundary conditions is presented.
After measuring two interior temperature histories, the mollification method is

used to determine the surface transient heat source if the energy radiation law
is known. Alternatively, if the active surface is heated by a source at a rate
proportional to a given function, the nonlinear surface radiation law is then

recovered as a function of the interface temperature when the problem is
feasible. Two typical examples corresponding to Newton cooling law and Stefan
-Boltzmann radiation law respectively are illustrated. In all cases, the

method predicts the surface conditions with an accuracy suitable for many
practical purposes.
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F 1. Introduction.

In this paper we investigate the numerical identification of surface transient
heat sources in one-dimensional semi-infinite and finite slab mediums when the

active surface radiates energy according to a known nonlinear law. Alternatively,

if the active surface is heated by a source at a rate proportional to a given
function, the nonlinear radiating boundary condition is then numerically identified

as a function of the interface temperature if the problem is feasible.
These two tasks can be viewed as suitable generalizations of the classical

problem of attempting to determine the interface temperature between a ,gas and a
solid with a nonlinear heat transfer law. The existence and uniqueness of a

strictly increasing solution of the semi-infinite body version of this problem has
been considered by Mann and Wolf [Ref.7] for a monotone Lipschitz radiation law.

Roberts and Mann [Ref.10] extended the previous result after removing the Lipschitz
condition on the nonlinear heat transfer law. Keller and Olmstead [Ref.6]

investigated the same problem in the presence of a positive integrable transient
source and introduced a constructive proof for existence and uniqueness of the

interface temperature by the method of lower and upper solutions. The numerical

solution of the nonlinear Volterra integral equation characterizing the active
surface temperature history was implemented by Chambr_ [Ref.1] using the method of

succesive approximations and, more recently, by Groetsch [Ref.3] who succesfully
combined Abel inversion formula with B-spline approximation and product
integration. A natural extension of this technique to solve the same problem in the
finite slab medium is discussed in Groetsch [Ref.4]. Also for the finite slab case,

Villase_or and Squire [Ref.12] have proposed a numerical procedure based on a

generalized trapezoidal rule and Richardson extrapolation. More general problems of
the same kind, combining the effects of convection and radiation at the interface,
can be found in Friedman [Ref.21 and Saljnikov and Petrovic [Ref.lll.

In all the works mentioned above, the nonlinear radiation law and the transient

boundary source are supposed to be known in order to determine the interface

temperature. Consequently, if the new task consists on the identification of the
nonlinear radiation law or on the identification of the transient boundary source

function, a different approach must be used.

It is possible to estimate the surface temperature and the surface heat flux in
a body from measured temperature histories at fixed locations inside the body.

However, this Inverse Heat Conduction Problem (IHCP) is an ill-posed problem

because small errors in the data induce large errors in the computed surface heat
flux history or in the computed temperature history solutions and, consequently,

special methods are needed in order to restore continuity with respect to the data.

In this paper we consider initially, the solution of a one-dimensional IHCP by a
fully explicit and stable space marching finite difference implementation of the

Mollification Method introduced by Murio [Ref.81 and Guo, Murio and Roth [Ref.5].

The procedure allows for a direct discretization of the differential equation and
it is generated by automatically filtering the noisy data by discrete mollification

against a suitable averaging kernel and then using finite differences, marching in
space, to numerically solve the associated well-posed problem. Once the temperature

and the heat flux transient functions have been approximately recovered at the
interface, it is a simple task to numerically identify the transient heat source if

the nonlinear radiation law is known. On the other hand, if the surface is heated

by a source at a rate proportional to a given function, we proceed to approximately

recover the nonlinear surface radiation law describing the physical conditions at

the interface, provided that the range of temperatures at the interface contain
sufficient information.

In Section 2, we define the new identification problems with data specified on a

L /
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F continuum of time and data errors measured in the L 2 norm and derive rigorous[
stability bounds. The efficiency of the method is demonstrated in Section 3, where

together with a description of the numerical procedure, we present the results of
several computational experiments with rapidly varying and discontinuous profiles,

for both linear - Newton cooling law - and nonlinear - Stefan-Boltzmann taw -
models. In all cases, numerical stability and good accuracy are achieved even for

small time steps and high levels of noise in the data. Section 4 includes a summary
and some conclusions.

2. Description of the Problem.

We consider a one-dimensional IHCP in a semi-infinite or finite slab, in which

the temperature and heat flux histories f(t) and q(t) on the left-hand surface (x =

O) are desired and unknown, and the temperature and heat flux at some interior

point x = x0 or at the right-hand surface x = a are approximately measurable. Note

that, equivalently, the data temperature histories might be measured at two

interior points. For the semi-infinite medium, 0 < x0 and for the finite slab, 0 <

x0 -< a. We assume linear heat conduction with constant coefficients and normalize

the problem by dimensionless quantities. Without loss of generality, we consider x0

= a = l in all cases. The problem can be described mathematically as follows.

For the semi-infinite or finite slab, the unknown temperature u(x,t) satisfies

respectively,

ut(x,t) = Uxx(X,t) ,

u(l,t) = F(t),

-Ux(l,t) = Q(t),

u(x,O) = uo(x),

u(O,t) = f(t).

-ux(O,t) = q(t)

t > O, 0 < x < _ or 0 < x < 1,

t > O, with corresponding approximate

data function Fro(t),

t > O, with corresponding approximate

data function Qm(t),

O < x < o0 or O < x < 1,

t > O, the desired but unknown

temperature function,

= E(u(O,t))-g(t),t > O, the desired but unknown
heat flux function.

(la)

(Ib)

(Ic)

(Id)

(le)

(lf)

L

The nonlinear boundary condition (If), indicates that the active surface radiates

energy at a rate proportional to E and is heated at a rate proportional to the

function g. Our aim is to obtain more detailed information about the boundary

condition at the interface x --O. More precisely, we want to estimate the

function E if g is known or, reciprocally, we want to identify the source function

g if the radiation law E is given.

We also assume that all the functions involved are L 2 functions in any time

interval of interest and use the corresponding L2 norm, as defined below, to

measure errors:

tz ] 1/2Ilfll = [ J't, {f(t)[2 dt .

In this setting, it is also natural to hypothesize that the exact data functions

F(t) and Q(t) and the measured data functions Fro(t) and Qm(t) satisfy the L 2 data

error bounds

IIF-FmII -< c and IIQ-Qm{I -< c.
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F It is well known that solving for f(t) and q(t) from F(t) and Q(t) amplifies I
every Fourier frequency component of the error by the factor exp[w/2] 1/2, -0o <w< ¢=.

This shows that the inverse problem is highly ill-posed in the high frequency

components. See Murio [Ref.8] and Guo, Murio and Roth [Ref.5] for further
discussions.

Stabilized Problem.

The one-dimensional IHCP can be stabilized if instead of attempting to find the

point values of the temperature function f(t) or the heat flux function q(t), we

attempt to reconstruct the 6-mollification of the functions f and q at time t,

given by

J6f(t) = (psmf)(t), J&q(t) = (p&_q)(t),

where

1

p6(t) - exp[-t2/62]
6 n 1/2

is the one-dimensional Gaussian kernel of radius & > 0. The mollifier p6(t) is

always positive, falls to nearly zero outside the interval centered at the origin
and radius 3C5 and

(pc3"f}(t} = J" p6(r)f(t-r) dr

is the one-dimensional convolution of the functions Pc5 and f. We notice that J&f(t)

is a C_ (infinitely differentiable) function and that the mollifier has total

integral 1. Mollifying system (1), we obtain the following associated problem:

Attempt to find J&fm(t) = Jc3u(0,t) and Jcsqm(t) = -JsUx(0,t} at some point t of

interest and for some radius C5 > O, given that J6u(x,t) satisfies for the semi-

infinite or finite slab respectively,

(Jc3u)t = (Jc3U)xx,

Je3u(1,t) = JcsFm(t),

-Jc3Ux(l,t) = J6Qm(t),

J6u(x,O) = J_u0(x,O),

J6u(O,t) = Jcsfm(t),

-J6ux(0,t} = J6qm(t},

t > O, 0 < x < _ or 0 < x < 1,

t>0,

t>0,

0 < x < _ or 0 < x < 1,

t > O, unknown,

t > O, unknown.

(2)

L

This problem and its solutions satisfy the following:

Theorem I. Suppose that IIF-Fmll -< c and IIQ-Qmll -< c. Then

(i} Problem (2} is a formally stable problem with respect to perturbations in the
data.

(ii) If the exact boundary temperature function f(t) and the exact heat flux

function q(t) have uniformly bounded first order derivatives on the bounded domain

D = [O,T], then Jsfm and Jsqm verify

l
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F IIf-J6fmll D _ 0(6) + 3c exp[(2(3) -2/3]

and

C

IIq-J6qmll D -_ 0(6) + - (1 + 3 exp[6-z/3]). (4)
2

The proof of this statement can be found in Guo, Murio and Roth [Ref.5].

Once the mollified temperature and mollified heat flux functions have been

evaluated at the interface, it is feasible to attempt to identify the source
function g or the radiation energy function E given in formula (If).

Identification o__ffthe source function g.

Assuming that the radiation law at the active surface is known, according to
(If), the exact source function is given by

g(t) = E(f(t))-q(t). (5)

The approximate source function, denoted ga(t), is defined by

ga (t) = E(J6fm(t))-J(3qm(t), (6)

and in order to estimate the error, we suppose that the surface radiates energy at

a rate proportional to If(t)] p. Here p is a positive integer, the value p = 1
corresponding to Newton's law of cooling and p = 4 to Stefan's radiation law.

The difference (5) - (6) gives

g(t) - ga(t) = If(t)] p - [J6fm(t)lP + q(t) - J6qm(t).

From the identity a n - bn = (a-b)(an-l+an-2b +...+abn-2+bn-1), taking norms and

introducing M = max {llJ(3fmll_,D, IIfll_,D} , we get

IIg - gall D __ pM p-I Ill - J(3fmlID + IIq - J(3qmll D.

Combining the last inequality with the upper bounds (3) and (4), we obtain the
estimate

IIg - gallD -_ {pM p-I + 1) {O((3) + 3e exp[(3-z/3]}. (7)

This shows that the identification of the source function g is stable with respect
to errors in the data functions F and Q , for fixed p and (3 > O.

Remarks:

I. Notice that the approximate source function ga is actually a function of the

radius of mollification (3, the amount of noise in the data c and the exponent p in
the radiation mode] E.

2. From a more theoretical point of view, inequality (7) can be used to show the

convergence of ga to g in the L2 norm. In fact, setting 0((3) = C (3 for some

constant C > O, and choosing (3 = []n(I/cli2)]-3i2, after replacing these quantities
in (7), we obtain

liE - gallD _ (pM p-I + l)(C[In(I/cilz)]-31z + 3cilz).

This last inequality implies that, for the special selection of the radius of

mollification indicated above, llg -gallD -) 0 as c -_O, for any value of p.

Identification of the radiation law function E.

L
From equation (lf) it follows that the exact function E, assuming that the

J
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F source function g is given, satisfies
ECu(O,t)) = ECf(t)) = g(t) + q(t). (8)

The approximate function, denoted E a, is defined by

Ea(.16fm(t)) = g(t) + J6qm(t). (9)

Subtracting (8) from (9), taking norms and using inequality (4), we inmediately
have

c
liE - Eall D -< O(6) + -- (1+ 3 exp[8-z/3]). (10)

2

This estimate also shows that the identification of the radiation law - as a

function of time - is stable with respect to perturbations in the data functions F

and Q, for a fixed & > 0, provided that the source function is known. However, this

information is clearly not sufficient to identify the physical process at the

interface. Nevertheless, since at each time t i we know the ordered pairs

(ti,J&fm(ti)) and (ti,Ea(ti)}, it is possible to collect the coordinates

(J6fm(ti),Ea(ti)) for t in a discrete subset of D and obtain a graph of the

approximate funcional relationship between the radiation law and the temperature at

the interface. This is certainly always the case if the cardinatity of the range of

temperatures {J6fmt(i)) is sufficiently large. Similar remarks to the ones in the

previous paragraph, about the parameter dependency of E a and convergence in the L 2

norm of E a to E as the quality of the data functions improve, c _ 0, also apply

here.

The computational details are presented in the next section.

3. Numerical Procedure.

L

With v = J_u and z = -Ov/Ox, system (2) is equivalent to

0v 0z
- t > 0, 0 < x < _ or 0 < x < 1,

at ax'

Ov

8x

v(l,t) = J6Fm(t),

z(1,t) = J&Qm(t), (11)

v(x,0) = J6u0(x,0),

v(0,t) = Jsfm(t),

z(0,t) = J6qm(t),

Without loss of generality, we will seek to reconstruct the unknown mollified

boundary temperature function J&fm and the mollified boundary heat flux function

J&qm in the unit interval I = [0,1] of the time axis (x = 0). Consider a uniform

grid in the (x,t) space:{(x i = ih, t n = nk), i = 0,1 ..... N, Nh = 1; n = 0,1 ..... M,

Mk = L}, where L depends on h and k in a way to be specified later, L > 1.
Let the grid functions V and W be defined by

n n
V i = v(xi,tn), W i = z(xi,tn), 0 -" i -( N, 0 -_ n -_ M.

Notice that

t > 0, 0 < x < _ or 0 < x < 1,

t>0,

t>0,

0 < x < _ or 0 < x < I,

t > 0, unknown,

t > 0, unknown.
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F VI_ = J8Fm(tn )' W_ = JsQm(tn), 0 -< n -< M,

and

0
V i = Jsu0(xi,0), 0 -_ i -< N.

We approximate the partial differential equation in system (11) with the consistent
finite difference schemes

n n Lcvn+l n-1
Wi-1 = Wi - t - Vi ),

2k

n n n
Vi_ 1 = V i - h Wi_ 1, (12)

i = N, N-I .... ,1; n = 1,2,...,M-1.

Notice that, as we march backward in the x-direction, we must drop the estimation
of the interior temperature from the highest previous point in time. Since we want

to evaluate {V_3} and {W_)) at the grid points of the unit time interval I = [0,1]

after N iterations, the minimum initial length L of the data sample interval in the
time axis (x = 1) needs to satisfy the condition L = kM = 1 - k +k/h.

Once the temperature J8fm and the heat flux Jsq m have been reconstructed, we

proceed with the approximate identification of the source function ga or the

radiation law function E a as explained in Section 2.

Remarks:

1. The radius of mollification, 6, can be selected automatically as a function of
the level of noise in the data. In fact, for a given c > O, there is a unique 8 >
O, such that

IIJsF m - Fmll D = c. (13)

For the proof of this assertion and some discussions on the numerical

implementation of this practical selection criterion, see Murio [Ref.9].

2. For the proof of the unconditional stability of the finite difference scheme
(12) and the analysis of the convergence of the numerical solution of the mollified
problem (11), the reader should consult Guo, Murio and Roth [Ref.5].

Numerical Results.

In order to test the accuracy and the stability properties of our method, in
Problem 1, the approximate reconstruction of a source function g(t) and a nonlinear

radiation law E(u(O,t)) are investigated for a one-dimensional finite slab exposed

to a heat flux data function at the free surface x = 1 given by -Ux(1,t) = Q(t) =

0, t > 0, and a temperature data function

1 2 ® (-1) n
u(1,t) = F(t) = (t-0.2) _ --exp [-n2n2(t-0.2)], t > 0.2,

6 nz n=l n 2
O, O < t__ O.2.

The exact source solution to be approximately reconstructed at the interface x = 0

has equation g(t) = E(u(O,tl) - q(t), where E(u(O,t)) = [u(O,t)] p and q(t) =
-ux(O,t). We consider the values p = 1 and p = 4 corresponding to Newton's law of

L

7
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cooling and Stefan s radiation law respectively. The exact radiation law at theq
interface is given by E(u(O,t)) = g(t) + q(t) and we only consider the nonlinear'
case p = 4. If the initial temperature distribution u(x,O) is zero, the exact

temperature and heat flux functions at the interface are given respectively by

a function at the free surface x = 1 given by -Ux(1,t) = O(t) = O, t > O, and a

temperature data function

1 2 Qo 1
u(O,t) = f(t) = (t-0.2)+- - --Z --exp [-n2-_2(t-0.2)], t > 0.2,

3 lg2 n=l n 2

O, 0 < t -< 0.2.

and

-Ux(O,t) = q(t) = _" 1, t > 0.2,

l O, 0 <t-< 0.2.

With this information we generate the exact functions E(u(O,t)) and g(t) for our
model problem.

In Problem 2, we attempt to approximately reconstruct the transient source

function g(t) for a semi-infinite body initially at zero temperature with data
functions

(

u(1,t) = F(t) = 4 erfc[{t-O'2}-l/z/2]' t > 0.2,

[ O, 0 <t_< 0.2,

and

L

f

-Ux(1,t) = Q(t) = _ [)t{t-O'2)l-1/Zexp{-[4)t-0"2}]-l}' t > 0.2,

[ O, 0 < t - 0.2.

The unique temperature solution at the interface is

u(O,t) = f(t) = _ 1, t > 0.2,

• l O, 0 < t - 0.2.

and the corresponding heat flux at the interface is

-Ux{0,t) = q(t} = _ [_(t-0"2)]-l/z' t > 0.2,

t 0, 0 < t-_ 0.2.

In this case, we do not attempt the identification of the radiation law at the

active boundary. The energy as a function of the interface temperature is either 0
or 1 for any value of p making its identification impossible. There is no enough

information in the range of boundary temperatures which in this example is reduced
to just two temperature values.

Since in practice only a discrete set of points is generally available, we shall

assume that the data functions F m and Qm are discrete functions measured at equally

spaced points in the time domain I = [0,L], where L = 1 - k + k/h, Nh = 1, h = Ax

and k = &t. In order to compute J&Fm(t n) and J6Qm(tn} in I, we need to extend the

data functions in such a way that Fm and Qm decay smoothly to zero in the interval

I¢_max = [-3_max,L+3¢_ max ] and both are zero in R - I6max. In what follows, we

consider the extended discrete data functions F m and Qm defined at equally spaced

sample points on any interval of interest in the time axis.

The selection of the radius of mollification is implemented by solving the

J
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F discrete version of equation (13), using the bisection method.
Once the radii of mollification (3F and (3Q, associated with the data functions F m

and Qm respectively, and the discrete filtered data functions J6Fm(tn)=V_ and

J(3Qm(tn)=W_, O-_n-_M, are determined with (3 = max((3F,(3Q), we apply the

finite difference algorithm described previously in this section, marching backward

in the x-direction. The values Vp3 and W_), 0 -< n -_ M-N, so obtained, are then taken

as the accepted approximations for the interface temperature and heat flux

histories respectively at the different time locations at x = O. Finally, we

identify the approximate transient source function ga or the approximate radiation

law function E a at the grid points of the time interval I = [0,11 using equations

(6) and (9).

In all cases, we use h = Ax = 0.01 and k = At = 0.01. Thus, N = 100, L = 1.99, M

= 200, (3max = 0.1 and I(3max = [-0.3,2.29]. The noisy data is obtained by adding a

random error to the exact data at every grid point t n in l(3max:

Fm(t n) = F(t n) + On, 1

Qm(tn ) = O(tn) + ¢n,2,

where On, 1 and en, 2 are Gaussian variables of variance ¢2 = ¢2.

n
If the discretized computed transient source function component is denoted by ga

and the true component is gn = g(tn) ' we use the sample root mean square norm to

measure the error in the discretized interval I -- [0,11. The solution error is then

given by
1 M-N

Ilga - gllI = [ M- N n=_, (gan - gn)2 ],/2

n

If the discretized computed radiation law function component is denoted by E a =

Ea(t n) and the true component is E n = E(tn), after evaluating the ordered pairs

n n
(VO,Ea), 0 -_ n -_ M-N, we obtain a graph of the approximate functional relationship

between the radiation law and the temperature at the interface. This plot is then

compared with the exact graph corresponding to the values (f(tnl,E(tn)) of the

model problem.

Tables 1 and 2 show the results of our numerical experiments associated with

Problems 1 and 2 respectively, when attempting to identify the transient source
function at the interface. In all cases, the numerical stability of the method is

confirmed. The uniformly smaller error norms in Problem I are expected since

at time t = 0.2 the exact source solution has a finite jump discontinuity while in
Problem 2 the exact source solution has an infinite jump at time t = 0.2. For this

reason, we have added an extra column in Table 2 indicating the error norms in the

time interval [.3,1], after the discontinuity. It is clear that the method rapidly
dissipates the effect of the singularity, a very desirable feature.

The qualitative behavior of the reconstructed transient source function for

Problem I is illustrated in Figures I and 2 where the numerical solution for an

average perturbation e = 0.005 (full line) is plotted for p = i (Newton's cooling

law) and p = 4 (Stefan's radiation law) respectively. In Figure 3 we show the graph
associated with the reconstructed nonlinear radiation law as a function of the

approximate temperature at the interface for p = 4 (full line) and the exact

L J
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F radiation law (star symbols). 4 and 5 show the source]
boundary Figures computed
functions (full lines) for p = 1 and p = 4 respectively, for Problem 2 and for the
noise level c = 0,005.

PROBLEM 1

p = 1 (Newton) p = 4 (Stefan)

Error norm E

O. 000 O. 04 O. 0866 0.000
O. 002 O. 06 0 . 0921 0.002

O. 005 O. 06 0. 1014 0.005

Error norm

0.04 0.0867
0.06 0.0929

0.06 0.1038

Table 1. Error norm as a function of the level of noise

PROBLEM 2

p = 1 (Newon)

Error norm
[0, 1 ]/[.3, 1 ]

0.000 0.04 .5208/.0183 0.000

0.002 0.06 • 5560/.063 1 0.002
0.005 0.06 .5879/.1108 0.005

p = 4 (Stefan)

3 Error norm
[O,11/[.3, 1]

0.O4 .5t35/.O373

0.06 .5673/.0675

0.06 .5935/.1375

Table 2. Error norm as a function of the level of noise

4. Conclusions.

An explicit and unconditionally stable space marching finite difference method
for the solution of the one-dimensional transient inverse heat conduction problem

has been implemented for the numerical identification of surface heat sources, if
the energy radiation law at the active interface is known, and to the numerical

identification of the nonlinear surface radiation law if the surface is heated by a

source at a rate proportional to a given function and the interface temperature

contains enough information.

The computational procedure is applied to two examples corresponding to Newton
cooling law and to Stefan-Boltzmann radiation law. In both problems, the source
functions to be identified have discontinuous histories and in one case an infinite

jump. The algorithm restores stability with respect to the data, which is essential

for the introduction of the inverse problem approach, and good accuracy is
obtained, even for small time sample intervals and relative high noise levels in
the data.

L
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V
COMPARISON OF FOUR STABLE NUMERICAL METHODS

FOR ABEL'S INTEGRAL EQUATION

Diego A. Murio and Carlos E. Mejfa_

Department of Mathematical Sciences

University of Cincinnati
Cincinnati, OH 45221-0025

U.S.A.

ABSTRACT '":

92-I.3946

The 3-D image reconstruction from cone-beam projections in computerized
tomography leads naturally, in the case of radial symmetry, to the study of Abel-

type integral equations. If the experimental information is obtained from measured
data, on a discrete set of points, special methods are needed in order to restore

continuity with respect to the data. A new combined Regularized-Adjoint-Conjugate

Gradient algorithm (introduced in this work), together with two different
implementations of the Mollification Method (one based on a data filtering
technique and the other on the mollification of the kernel function) and a

regularization by truncation method (initially proposed for 2-D ray sample schemes

and more recently extended to 3-D cone-beam image reconstruction) are extensively

tested and compared for accuracy and numerical stability as functions of the level
of noise in the data.

1

1. INTRODUCTION.

The difficult problem of determining the structure of an object from its 3-D

cone-beam data projections is currently receiving considerable attention (see B. D.
Smith, Ref [16]). When the object is known to be radially symmetric, its structure

can be determined by using the inverse Abel transform. If the object does not have

radial symmetry, it can be reconstructed, in principle, by using the inverse Radon
transform.

Abel's integral equation can be written as

X

f(x) = f g(s) (x - s) -l/z ds, 0 - x - 1, (1)
o

where the function f(x) is the data function and g(s) is the unknown function. The
exact solution is given by

1 x

g(x) = - .l" f'(s) (x - s) -I/z ds, 0 -_ x -_ I,
/t 0

C2)

provided the derivative exists and f(0) = 0. (See R. Gorenflo and S. Vessella, Ref
16]).

It is well-known (References [1], [2], [4] and [6]) that Abel's integral equation

is somewhat ill-posed, that is, small errors in the data f(x) might cause large
errors in the computed solution g(x). Consequently, the direct use of formula (2)

is very limited and special methods are needed.

J
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F This paper has two main purposes. First, we present and briefly analyze a newl

stable method for the numerical solution of Abel's integral equation, Method I, by
weakly coupling the original problem with its adjoint formulation obtaining a

regularized system of linear equations which is then successfully solved by the
conjugate gradient method. Second, we test and compare the numerical stability and
the accuracy of Method I and three other known algorithms on several benchmark
examples as a function of the amount of noise in the data.

Method II in this paper (see D. A. Murio, Ref [12]), is obtained by initially

filtering the noisy data by discrete convolution with a suitable averaging kernel
instead of mollifying the kernel function in equation (2), Method III, as required

by K. Miller (Refs [10] and [11]) in his reconstruction algorithm for 2-D ray-
sampling schemes. Method IV has been implemented by D. A. Murio, D. Hinestroza and

C. E. Mejfa (Ref [13]) based on a regularization by truncation technique initially
proposed by B. K. P. Horn (Ref [9]) and recently extended to 3-D image
reconstruction methods from cone-beam projections by B. D. Smith (Ref [15]).

In Section 2 we introduce the new Method I, analyze the consistency and stability
properties of the algorithm and obtain an upper bound for the error. In Section 3,

we describe the other procedures and discuss in detail the numerical implementation
of all the methods involved. Section 4 is devoted to the numerical testing of the

four algorithms and the presentation of several useful comparisons involving
Methods I, II, III and IV. Some conclusions are included in Section 5.

l

2. REGULARIZED-ADJOINT-CONJUGATE GRADIENT METHOD. (Method I).

In a more abstract setting, equation (1) can be written as

Ag= f,

where A represents the Abel integral operator. For suitable functions h and q, the

adjoint operator A" is defined by

1

A"h(x) = q(x) - J" h(s) (s-x) -]/z ds,
X

O_<x_<l,

and it is clear that the homogeneous equation A'h = 0 has the unique solution h(x)

-= O, 0 -_ x -_ I. Hence, as a direct consequence of Fredholm alternative (see P. R.
Garabedian, Ref [5]), solving the singular equation Ag = f for smooth but

otherwise arbitrary data functions f satisfying f(O) = O, is equivalent to solve
the uncoupled system of linear integral equations

A g=f" h = O. (3)

In order to help stabilize the inverse problem, we propose to solve, instead of
(3), the weakly coupled system of equations

0 < a << I, (4)

by successive approximations. This system is equivalent to

J
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F

Au - av = f
BA*v + cc2Bu - u + u = O,

where B is any nonzero real number to be determined. We elect B to depend on the

iteration and rewrite the previous system as

Un - (Zv n = f

nA"Vn + (x2/_nU n - u n + Un+ 1 = O,

to obtain

Vn = Au n - f

n.l u_ - _n[_Zun + A'((XVn)] ,
n = O,1,2 ..... (5)

u o arbitrary, usually O.

Remarks:

I. Each iteration in (5) involves the solution of two "direct" problems: one

corresponding to the original operator, AUn, and the other associated with the

adjoint operator, A'((XVn).

2. Elimination of v in system (4) leads to the set of normal equations, with l

indicating the identity operator,

(A'A + _ZI)u : A'f, (6)

which characterizes the minimum of the zero order Tikhonov functional (see C. W.

Groetsch, Ref [7])

1

J(u) = - ( I I Au - f I{ z + sail u I I z ). (7)
2

3. The gradient of the functional (7) is given by

VJ(u) = _Zu + A*(Au - f)

and it is easily computed if the solution of the adjoint problem is known. In fact,

taking into consideration (4), we can write VJ(u) = aZu + A'(_v), and for each

iteration we get
e

VJ(u n) = O;2U n + A ((XVn). (8)

These considerations allow us to choose _n, for each n, in such a manner that

system (5) can now be solved by the Conjugate Gradient Method (W. M. Patterson, Ref
[14]).

The complete abstract algorithm, after introducing the notations
1

(f,g) = I f(x)g(x) dx and [[ f [[ -- (f,f)l/z, corresponding to the inner product and
0

L J
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F norm respectively of square integrable functions on the interval

follows:

[0,1], is as I

For n = 0,

0) Set u 0 = 0 and choose _ > O.

1) .Compute Au o. i.e., solve the original direct problem.

2) Compute the residual ccvo = Au o - f.

3) Compute A'(c_v0), i.e., solve the direct adjoint problem.

4) Evaluate the gradient d o = VJ(u o) using formula (8).

II d o II z
5) Set r o =

a2 II do II z + [l Ad o II z

6) Update: u I = u o - rod o.

For n = 1,2 .....

r) Solve the original direct problem Au n.

2') Compute the residual _v n = Au n - f.

3') Solve the direct adjoint problem Am(_Vn ).

4') Evaluate the gradient VJ(u n) using formula (8).

II VJ(u n) II z
4") Compute dn = VJ(un) + dn-l"

I I VJ(un_I) I I 2

(VJ(UnJ,dn)

5') Set r n =

_211dnllZ +llAd nIl2

6') Update: un. 1 = u n - rnd n.

L

Stability of Method I.

We consider now the more realistic situation when instead of the exact data

function f, we only know some noisy data function fc satisfying

II f - fc II -_ c.

In this section the unique solution of system (4) will be denoted by u c to

emphasize its dependency on the regularization parameter _ and the level of noise

in the data c. Assuming that the ideal problem (1) for errorless data f has the

unique solution g = A-If, since uc satisfies equation (6), with f replaced by re,

it follows from well-known estimates in the theory of Tikhonov regularization that

II g - u_ II = C o _1/2 and I I u_ - uCll -< c _-l/z

for some constant C o > 0, independent of _; u_ denotes the regularized solution

when c = 0.

Combining these estimates, we obtain the error upper bound

J
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II g - u_ II-_ C o ,xl/2 + c _-,/2

and choosing _ = C,e for some constant CI > 0, it follows that

II g - u_ II -< (C o + C;') _,/2 (9)

which shows that, theoretically, as the quality of the data becomes better and

better (e -) 0), we get convergence with rate _l/z. See C. W. Groetsch (Ref [7]) for
details.

The convergence of the sequence of iterates u_e,n from system (5), with /3n as

discussed above, to the unique solution u_e of the canonical equations (6) as n -) co

is well documented, for instance, in the work of C. W. Groetsch, J. T. King and D.
A. Murio (Ref [8]) and will not be pursued further here.

The finite dimensional version of the combined Regularized-Adjoint-Conjugate
Gradient algorithm will be discussed in the next Section.

]

3. METHODS II, III AND IV. NUMERICAL IMPLEMENTATIONS.

Method II in this paper is based on attempting to reconstruct a mollified version
of the solution g in equation (2). After introducing the c3-mollifier

l -1/2

p6(x) = _ _ exp[-x2/82]
8

(10)

of "blurring radius" 8 and extending the data function fc to the interval

[-36,1+38] in such a way that it decays smoothly to zero on [1,1+36] and it is zero
on [-38,0], an approximate solution is defined by

1 X

g_(x),, = ll- J'o (p6° fc)'(s) (x - s) -1/2 ds, 0 -_ x - 1. (11)

Here,

=o d x+38 d

(Ps" fe)'(x) = I_= d--x [pS(x - s) fC(sl] ds = {-38 d--_ [pS(x - s) fC(s)l ds,

showing that the main idea of the method consists on replacing the noisy data

function fc by the filtered data function P8" fc It is important to notice that

the radius of mollification, 8, can be uniquely and automatically determined as a

function of the amount of noise in the data, c, based in the fact that there is a

unique value of the regularizing parameter 8 for which

I I PS" fc _ fc I I = c. (12)

Under very mild conditions, i.e., if fc is continuous and if the second

derivative of the errorless data function f is uniformly bounded by Mz in the
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F sample interval (0,1), the following error estimate holds

6

II g_ - g II _ - (a M 2 + C//5).
7[

(13)

The complete abstract algorithm is as follows:

1) Automatically determine the unique radius of mollification /5 as a function of
the level of noise c.

2) Smoothly extend the noisy data function fc to [-3/5,1+3/5].

3) Compute the derivative of the filtered data function p/5 fc.

4) Compute g_ using equation (11).

For more details and further discussions, the reader should consult D. A. Murio,
Ref [12].

Method III is based on the Mollification Method as originally proposed by K.

Miller (Refs [10] and [11]) for 2-D ray-sampling reconstruction geometries. First
we notice that the exact formula (2) can be written

1
g(x) = - (k = f')(x), 0 -_ X -< i,

where k(t) = t -l/z represents the kernel function. The mollification of the last

equation with the averaging kernel defined in (lO) gives

1

Cp8= g)(x) = - (p/5* k = f')Cx).
lZ

In Method II, we associated the right-hand side of this equation as k" (p/5= f') =

k" (p$" f)'; for Miller's idea we associate as (p_= k) " f'= (p/5* k)'" f and obtain

the approximate reconstruction solution

1 x

g_(x)o = Iz-So(P6" k)'(x - s) fC{s) ds,
0 - x -_ 1. (14)

Mathematically, formulae (11), for Method II, and (14), for Method III, are

identical. Consequently, the theoretical error bound (13) derived for Method II

also applies for Method III.
The complete abstract algorithm for Method III is given by:

1} Choose /5 > 0.

2) Compute the mollified kernel p/5* k.

3) Evaluate the derivative of the mollified kernel ps" k.

4) Compute g_ using equation (14).

Remarks:

1. In Method Ill, the mollified kernel is computed only once and is used repeatedly
for different data functions.

L
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r 2. Method II requires a filtering of each data function and the corresponding I

parameter is automatically selected according to the quality of the measured data.
3. The selection of the mollification parameter in Method III requires further
consideration.

Method IV is based on a reconstruction technique initially proposed by B. K. P.

Horn (Ref [9]) for arbitrary 2-D ray schemes and more recently extended to 3-D
image reconstruction methods from cone-beam projections by B. D. Smith (Ref [15]).

Integrating by parts equation (2), we obtain the equivalent expression

1 { x 1 x-3" )g(x) = - 1 im _,-3/2j" f(s) ds - - f f[s)(x-s)-a/2ds ,
rt _'+o x-_" 2 o

O_x_l.

The approximate inverse Abel transform is now obtained by eliminating the limit
procedure in the last expression, i.e.,

1 x 1 }g (xl = - { s f (s) ds- - ix- sl-" ds ,
n x-3" 2 o

0 -< x -< 1. (15)

By requiring the second derivative of the errorless data function f and the

measured data function fc to be continuous, we obtain the following error estimate

5 _l/z 2

]l g_e _ g I I -_ -2 --Mitt + -Tt c 3"-l/z + O(_'3/z),
(16)

where M1 is a uniform bound for f' on the interval (0,1). For a proof of this

assertion and a complete analysis of Method IV, see D. A. Murio, D. Hinestroza and

C. E. Mejia (Ref [13]).
The complete abstract algorithm for Method IV is reduced to

1) Choose 3" > O.

c using formula (15).2) Compute g_

Remark:

The error estimates (9), (13) and (16) show that all the methods are consistent

and stable with respect to perturbations in the data, in the L z norm, for a fixed

choice of the several regularization parameters _t, 5 or _'.

Numerical Implementations.
Since in practice only a discrete set of data points is generally available, we

assume that the data function fe is a discrete function measured at equally spaced

sample points on the interval [0,1]. For h > 0 and Nh = 1, we let xj = jh and

denote fC(xj) = f_, j = 0,1 ..... N, with fc = O.

Method I:

Discretization leads to a finite dimensional version of the combined

Regularized-Adjoint-Conjugate Gradient algorithm of Section 2. The operators A and

A ° are represented now by a matrix A and its transpose AT , respectively. The

L
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F
approximate discrete solution urn, a, obtained after m iterations, the gradient

VJ{Um), din, r m, u o and the residual aVrn are now N-dimensional real vectors. From

equation (1), a simple discretization gives the lower triangular system of linear

equations

h_ _aj÷l_l(Um,o_) l = fj ,
1=1

where

aj = (jh) -1/2, j = 1,2 ..... N,

indicates the (j-l) subdiagonal of the N x N matrix A.
The discrete algorithm for the Conjugate Gradient method (see P. G. Ciarlet, Ref

[3]) follows exactly the steps described previously in Section 2, and we only have
to add the necessary stopping criteria, given by

II e e II
Urn,IX - Urn-l,II 2 c iiz,-< TOL II Um, _

where TOL is a small positive tolerance parameter entered by the user and

i .]z (17)

is the discrete I z norm on [0,I].

Method Ih

To numerically approximate g6(x), a quadrature formula for the convolution

equation (II) is required. The objective is to introduce a simple approximation and

avoid any artificial smoothing in the process.

Given xj, j = 0,I ..... N, we define

qe(x) = T) f_ttx), o <- x _- xj,
I---0

a piecewise constant interpolation of fC(x) at the grid points x I. Here,

1, O-_ x -¢ h/2O°(x) = O, otherwise ' 1, xj-h/2 _ x _ xj#j(x) = O, otherwise

and

1, xi-h/2 -_ x -_ xl+h/2_i[x) = O, otherwise , i = 1,2,...,j-l.

The computational algorithm is as follows:
After smoothly extending the discrete data function to any interval of interest

containing the sample interval [0,1], we determine the radius of mollification 6 as

L 1
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'-1

F a function of the amount of noise in the data c by solving the discrete version of [

equation (12) using the bisection method. Next, we substitute fc by its

interpolation qC and compute the approximation to p_ . fc given by the discrete

convolution

Cpa • qC)Cx)= Zk f_(P_" CR)CXj) = k_ fCk m_,

where the weights ma. are evaluated exactly. A discrete version of the derivative of
J

the discrete filtered data function is obtained using centered finite differences.

Finally, the discrete approximation to g_ is calculated by discretely convolving

the computed derivative approximation against the sampled data function (see

equation (11)). For a detailed analysis of this algorithm, the reader is referred

to D. A. Murio (Ref [12]).

Method IIh

The convolution P6 " k requires an extension of the singular kernel k for values

of x less or equal to zero. In our implementation we use the following symmetric
extension:

k(0) = 2h -l/z, kC-x) = k(x), x > 0.

The discrete approximation is now straightforward:

With sj = (p6 • k)(xj), j = 0,1 ..... N, the discrete convolution formula

corresponding to equation (14) is

g_,a(o) = o,

and

g_,a(xl) = ! E j c _ fke 1)/2 'n k=l Sj-k(fk+l

I

g_,aCi) = g_,a(XN_l} + -- So(f _ - f__l),

j = 1,2 .... N-1

where g_,6 is the approximate inverse Abel transform at the grid points.

Method IV:

In this case, we first construct a piecewise linear interpolation of fC(x) at

the grid points x j, given by

q c{x) = Z j f_ 01 (x),
1=o

0 -- X -- X j,

where the functions el(x), i = 0,I ..... N are given by

L 1
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= I.$ l-x/h, 0 --- x -< h ¢l(x ) = _" l+(x-xj)/h, xj_ls x - xjCo(x)

0 otherw ise, ( 0 otherwise,

and

l+(x-xl)/h, Xl_ 1 : X --<X I¢I (x) = l-(x-x L)/h, x I -< -< xi÷ I

0 otherwise, i = 1,2 ..... j.

We notice that the approximate solution g_(x) of formula (15) can also be

written as

1

g$(x) = - (H_" fel(x), 0 s x s 1, (18)

where the kernel H_, is defined by

H_.(t) (-2 t-a/z'

The quadrature formula for equation (18) is obtained by directly convolving the

kernel function H_. with qe as indicated below. Thus, the computed solution at the

grid points is given by

1 1

= c b_(xj),g_,,h(Xj) -- (H_* qe)(xj) - _J f l
ff 7[ I=0

where the weights

b_(xj) = j xj H_(xj - s) Of(s) ds
0

are evaluated exactly for i = 0,1 ..... j. The readers interested in further details

should consult D. A. Murio, D. Hinestroza and C. E. Mejia (Ref [131).

4. NUMERICAL RESULTS AND COMPARISON.

In this section we describe the tests that have been implemented in order to

compare the performance of the methods introduced in previous sections.

We tested the methods on three examples. In all of them, the exact data

function is denoted f(x) and the noisy data function fC(x) is obtained by adding an

c random error to f(x), that is, fC(xj) = f(xj) + co-j, where xj = jh, j =

0,i ..... N; Nh = 1 and _j is a uniform random variable with values in [-i,I] such

that

max fe{xj) - f(xj) I -< c.
O-.<j-<N

The exact inverse Abel transform is denoted g(x) and its approximation given by

l 1
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any of the methods is denoted g_,h(Xl, where p represents the regularization

parameter of the particular method.

Example h

As a first example .we consider the data function f(x) = x with exact inverse
2

Abel transform g(x) - x l/z. This data function satisfies all the necessary

hypotheses for convergence estimates of Sections 2 and 3.

Example 2:

The data function

(
f(x) = _ 2xZ 0<x< 1/2

L1-2(1-x)2:1/2 -<x<l,

is only once continuously differentiable on [0,1], partially violating the required

conditions for the theoretical error analysis of Sections 2 and 3. In this example,
the exact inverse Abel transform is given by

(16/3N)x 3/z, O-<x 1/2g(x)= (16/3N)x 3/2 + (16/3_) (x-l/2) 3/z - (8/_)(x-1/2)l/Z(2x-1),

1/2 <x<l.

Example 3:

The data function is defined as follows:

0, 0 < x <0.2,
f(x) = 2(x-0.2) l/z, 0.2 < x < 0.6,

2(x-0.2) 1/2- 2(x-0.6) l/z 0.6 < x -< 1.

Its first derivative is not continuous on [0,I], strongly violating the

necessary hypotheses for the convergence estimates of Sections 2 and 3. The exact

inverse Abel transform is given by

£

g(x) = J 1, 0.2 - x < 0.6,

[ 0, otherwise.

The four methods were tested for three different values of N, N = 200, 500 and

I000, three different values of c, c = 0.0, 0.005 and 0.01, and several values of

the corresponding regularization parameters. The algorithms were extensively used

and we numerically determined appropriate values for the regularization parameters
for each method, except for Method II where the radius of mollification was

selected automatically. These quasi-optimal parameter values are used in the tables

and figures below.
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Different values of c provide a crucial test for stability. Tables 1, 2 and 3

illustrate this point. The error norms in the tables are computed as II g - g_,hll z

according to definition (17). In the tables, each row corresponds to one of the

methods with a fixed regularization parameter, and shows the change in the error
norm due to changes in the level of noise in the data. The presented numerical

results indicate stability. The columns in the tables allow us to compare the
performance of the methods under similar conditions.

Figures 1 to 4 show the reconstructions of the step function of Example 3
provided by the four methods for the same number of sample data points, N = 500,

the same noise level, _ = 0.01, and quasi-optimal regularization parameters. The
qualitative behavior is quite good taken into consideration the high amount of
noise in the data.

5. CONCLUSIONS

The following are some conclusions based on the implementations of the methods
presented in this paper:

Consistency and stability of the four methods is clearly confirmed throughout
experimentation and very weak dependency on the parameter N is observed.

Method II provides an automatic mechanism to select the radius of mollification

as a function of the level of noise in the data. Furthermore, as a consequence of
the stability of the four methods, it is easy to find, by numerical

experimentation, lower and upper bounds for quasi-optimal regularization parameters.
An advantage of method III over method II is that the mollification of the

kernel is computed only once and can be used for different data functions. Methods
II applies mollification to each data set.

All the results are very competitive. However, mollification solutions are

slightly better in terms of accuracy and method IV, the easiest to implement, seems
to be more sensitive to perturbations in the data.
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Method Parameter

I a = 0.08

II 18 = 0.008
Ill 6 = 0.008

IV _" = 0.004

c = 0.0 c = 0.005 c = 0.01

0.0279 0.0294 0.0359

0.0000 0.0048 0.0096

0.0005 0.0137 0.0274

0.0302 0.0315 0.0349

Table 1. Error Norms as functions of c

in Example 1 with N = 500

Method Parameter c = 0.0 e = 0.005

I a = 0.08 0.0275 0.0293

II _ = 0.008 0.0001 0.0048

III _ = 0.008 0.0005 0.0136

IV ? = 0.001 0.0174 0.0263

e = 0.01

0.0365
0.0096

0.0273
0.O431

Table 2. Error Norms as functions of c

in Example 2 with N = 500

Method Parameter c = 0.0 c = 0.005

I a = 0.08 0.0615 0.0618

II 6 = 0.008 0.0052 0.0052

III 6 = 0.008 0.0295 0.0330

IV _ = 0.001 0.0648 0.0678

E:= 0.01

0.0641
0.0053

0.0411
0.0760

Table 3. Error Norms as functions of

in Example 3 with N = 500

]
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ABSTRACT

The work is devoted to the theoretical analysis of contact melting by the migrating heat source with

an arbitrary shaped isothermal heating surface.After the substantiated simplification the governing equa-

tions are transformed to the convenient for engineering calculations relationships. Analytical solutions

are used for numerical prediction of optimal shape of the heating surface. Problem is investigcted for the

constant and for temperature dependent physical properties of the melt.

1. INTRODUCTION

Melting of solids by contact with a heating surface takes place in numero._, natural and

technological processes. These processes arc enumerated in the previous works [2, 4, 12-14, 22] devoted

to contact melting problem and are divided into two groups. In one group the melting material lies on the

hcating surface and pressed against it by some external force (for instance, the force of the weight of the

melting material). This situation arises when an unfixed solid melts in an enclosure [1, 16, 22] and in other

contact melting devices used in industry [8]. Another group of applications involves a moving heat source

melting its way through the surrounding solid. This situation arises in such fields as welding [21], geology

[3], nuclear technology [9, 10] thermal drilling of rocks [4, 6, 18, 20] and glaciers [11, 17, 19]. Thermal dril-

ling is commonly recognized now as the most effective method of boring glaciers. Boring rocks, sands and

soil by thermopenetrators is a relatively new method in mining engineering. It has some advantages in

comparison with traditional rotary drilling. The mo_t considerable advantage of thcrmodrilling is that

three major facts of excavation (rock fracturing, debris removal and wall stabilization) are accomplished

in a single integrated operation.

This work is devoted to the theoretical analysis of the contact melting process by the moving heating

source with an arbitrary shaped isothermal heating surface.

2. ANALYSIS

2.1. The physical model and govcrning equations.

Obviously every technological process where contact melting occurs has its own specific character. In

particular case of thcrmodrilling, it is contact melting with a great specific load and heat energy, wkh ar-

b Jitrary shaped heating surface. Thcrmopcnctrators arc radia]!y symmetric and in some cases ring-shaped,
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[-or toroidal, with a large central hole for forming and extracting the core sample [6]. A schematic diagram I
/

of the contact melting for the thermodrflling conditions is shown in FigA. Axisymmetrie heater -1 is pen-

etrating into the melting solid -2 with the velocity V under the effect of applied external force F. The

thermopenetrator is separated from the solid with a layer of melt -3, flowing along the thin chaancl be-

tween the heating surface _ h and solid-liquid intcrface _ m. It is assumed that the solid-liquid interface

is a sharply dcFmcd surface and melting occurs precisely at temperature t m, melt flow is laminar and

two-dimensional. Molten layer is assumed to be incompressible Newtonlan liquid with a temperature de-

pendent physical properties (except density). Experimental results [6, 15] indicated that the heat source ve-

locity attains its quasi-steady, constant value V soon after initiation of melting. This fact justifies the next

assumption of quasi-steady heat and mass transfer in the contact melting problem.

According to the physical model and assumptions enumerated above the governing differential equa-

tions of heat and mass transfer in the molten layer can be written as follows:

divF = 0

pL(F • V)_= G- pLVp + divT

CLpL(_. _t L) = div(2LVt L) + • (1)

where T is the deviator part of the tensor of internal stresses; _;, p, t L are the liquids velocity, pressure

and temperature respectively; ¢ represents the dissipative terms in heat transfer equation; CL, PL, 2L liq-

uid properties defined in Nomenclature; the rest of the symbols arc standard.

It is convenient for further analysis to use two systems of coordinates fixed to the hc:tting surface: cy-

lindrical coordinates (r, z) and local orthogonal boundary layer coordinates S and _ are i_,ticatcd in Fig. 1.

Transforming (1) to non-dimensional form and using the similarity method in a preliminary analysis

the main dimensionless parameters and numbers are generated [7]:

Pc Vd (P.P:V_ '/_ C ,=--, Ste= C'(t=-t_) Kh= , K,=-- Re=Vp d/PL k" ,
a L ' \ Pl. Wd / C_

WP PeKaK h 2
Br= ' , Pc= , K_--._' , K =prgd/W (2)

CL PL(t m __t,o) K ZL g

All the quantities here are defined in the Nomenclature. Each of the dimensionless numbers (2) has

an exact obvious physical meaning. In order to substantiate the simplification of the governing equations

(1), the analysis of the values of these non-dimensional numbers for the concrete conditions of thermal

drilling of ice and rock was carried out. Dimensionless parameter Kh_ 10 -3_ 10 -_ physically represents

the ratio of characteristic thickness of the molten layer and characteristic size of the heating surface d; cri-

terion K_ 10 -3 is the ratio of the characteristic mass force of the melt and external force; Reynolds

number Re-- 10 -6- 10-4; Brinkman number Br_ 10 -5_ 10 -4 represents the viscous dissipation of heat in

the molten layer, Pccklet number Pe_ 10-- 100; Stefan number Ste_ 1--10; K a, K¢_ 1.

After neglecting terms of 0(Kh, Kg, Re, Br) the governing nondimcnsional equations of heat and

mass transfer in the molten layer will take the following form:

1

au

1, o s(R,Hu)+__=_. =0 (3)
R or/

H2dP D au,= _- 0_-- ) (4)
ds o_/ vr/
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PcCH(Hu + u_ O) = _ c_

C L 2m , C= /C Lm ,wherc r/= , P=p/w , S=s/d , H=h/Khd , #=pL/PL

.m v p L V p L t L -- t
=2 r/x L, R=r/d , u =--, u =--, 0== = ,R=R(s)-cquation of generating line

' Vp, _ Vp, t_ - t

F h of heating surface _ h; h = h(s) -thickness of the molten layer mersurcd along the internal normal to

Fh; v,. v, -longitude and transverse velocities in the molten taycr; all the physical properties of liquid CL.
in ,1_1 m

2L. PL arc nondimensionalizcd by their values C L,z L,pL at temperature lm;rcfcrcncc temperature (

t'h--tm ) is determined after nondimcnsionalization of Stcfans condition.

_h-t =>eK (t -t ) (6)

Here too is initial temperature of melting material. In the equation (3) v=0 corresponds to the

ring-shaped penetrator with a large central hole. In this case since the thickncss of the liquid film is of

0(Kh) it is possible to ignore the axially symmetric behaviour of heat and mass transfer and to consider (r,

z) as the Cartesian coordinatcs; v= I corresponds to the continuous heating surface without hole.

The boundary conditions in dimensionless form arc following

At the heating surface _ h(r/= 0)

u =u =0; O=Oh; (7)

Oh = (th -- tin) / (_h -- tin); th is the unknown temperature on _ h

At the solid-liquid interface _ re(r/= 1)

dR
..... 0 = 0 (8)u O; u ds '

a0

H1000_l,.,=[ _eeQ +(dRds )/Ste ]; Q= (---_-n )12,' • (9)

where 0,= (t,-t_/(t=-t_), t, is a temperature of the solid material,n is an external relatively tomolten

layer normal to _ =.

For the pressure in the exit points of the molten layer s = s t and s = s2

P(sa) ---P(s2) = 0 (10)

Since when v= 1 it is only one exit point s= s: thca in this case s_ = 0 is the critical point where u, = 0

dP/ds=0.

The assumption of quasi-stationary heat and mass transfer couses the equality of external force F

and the force of internal stresses in the molten layer. This condition with the defined accuracy of 0(K h) in

non-dimensional form is [4]

2 fR_1 - 2_ RPdR (I I)
R 2 R I R,

The function Q in Stefan condition (9) is the non-dimensional density of heat flux to the solid from

surface ]_ m It% value depends on the temperature distribution in the solid and is obtained from the solu-

tion of the heat transfer problem which is the same as the problem of temperature distribution in the sur-

rounding weldpool material [21]:

L /
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V _0 g20 1 a _0 t

- Pc_--_ +-----!-' + 0; v 0,1; (12)az (R Tff) = =

0 tE, =1; lim 0 =0; 0 IE, =Or; (R,Z)=(r,z)/d; (13)
RI+Zl_

OF is temperature distribution on surface 3-" r, formed after mclting (Fig.l). Problem (12) (]3) was

solved in [4, 18] numerically by the boundary element method.

2.2. Analytical solutions

In [4] it was proved that boundary value problcm (12), (13) admits an analytical solution as a func-

tion of one independent variable when and only when the gencrating curve Fmof 3` _, is parabola. In

parabolic coordinates a and z related to ',he coordinates R and Z by R = za, Z = 0.5(crLr 2) with boundary

conditions on _=; z = _=,0,= 1, in infinity: "c----_, Oi---O, cquasion (12) has the following solution

Pc : .,- Pc : ,
Ei(--}--z )/Elt----_x=), v= 1

0 =. _ _ (14)crfc( z)/erfc( _ ), v=0

L

f.o r '_ cxp(- xu)where erfc(x)=_-- n • exp(--u2)du, Ei(-x)=j, u du x>0

According the formulae (9) and (14) the heat flux distribution on 3- m is
2

-_ 2 2

Pc e _ ,f_ Ei(-_, ), v= 1

Q = / 2 _ / l. (15)+a 'f_-'__crfc(_), v=0
m

where ,,2 = Per= / 2 Taking into account the fact that the distance between 3` h and _ = is the value

of 0(Kh) we can rewrite (15) with the accuracy of 0(Kh)

-,_dR _2Ei(--n2), v=l
Q=Pe-e -d_'s / t "f'a'aact fc (=), v=0 (16)

After simple transformation of equations (3) and (4) with invoked boundary conditions (7), (8) and

(10) the velocities and pressure distribution in the molten Laver are obtained

R'+1- R'+_ (..r/o _ q.

u, (v+ -°'7

(R "+' _R: +')1
U =

" (v+ 1)R" _s[ D

p v+_.__ f '+ R'+' - R'+;= " ds
, R'H+D

f'(t/- qo) r, t/d. f'd,,where D = _ qdr/, qo = Jo---_- / ----0 o /.t

(17)

_] (18)

R. is a critical point which is determined by (19) and the boundary coudition P(s_) = 0

(19)

1
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r f: f,d,R "+1 = s Rd------2-s/ ,H3D (20" ' H3D 'IR

when v= l it is supposed that R. =0

According the assumption 0_= const the temperature distribution in the molten layer is sought as a

function of one independent variable r/

0 = 0(r/) (21)

As follows from interracial condition (9) in this case

H dR
= H = const. (22)

Last formulae (22) and (21) simplify _'qualities (18), (19)

1 dR
u .... _0(r/) (23)D ds

_1 "+' _R '+'
- " ds (24)

P (v+ I)D J, H3R •

and heat transfer equation in the molten layer

VcH qJ0/) d0 d (2d0) (25)
D dtl dr/ dq

Integration of this equation with the associated boundary conditions

1
dO = HE; E = _dR + Ste (26)01,_,=0; -_1..1

l-'e--
ds

reduce to the following relationship

_ _"_1 .Pert r 1q_C
0(r/) = t:ta -expt-- --dr/)dr/ (27)

J,a DJ.;L

puting in (27) r/= 0 the temperature of the heating surface is determined

_ 11
EHI0_- ,Pert rtq_COh

= expt---D-- j --_-- dt/)d r/ (2S)

In order to simplify further computations assume that F h is specified by the equation Z = A(R-R. )2.

In this case heat flux distribution Q is determined by the equ:dity (16), where

dR 1

ds _fl + 4A2(R_ R.)2

P(s) introduction into (11) yields

_,= 1 f:' R( R'+'-R: +')
(R',- R'])(v+ I)2D -,17 4A'---_R:R-)--2dR (29)

whcreRi=R. =0 if v=l

One of the most important characteristics of coatact melting is the heat energy removal from the

heating surface to the melt. Combining heat energy definition in non-dimensional form

t"rq R

N = 2=j., 2d_)l._0dR

with the equation (27) we have

L J
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r N _(R: 2_)Ecxp(_--PeHf _= - R c_2 dtT) (30)
0

The quantity of heat energy calculated according (30) excesses the minimum heat power N O ,vhich is

necessary to sustain the chosen melting velocity V. In non-dimensional form
2

- R=)(1 + 1 / Ste)N o = _(R 2

Here N o in comparison with N does not contain the energy rate for heating melt and useless heat

dissipation in the surrounding thermopenetrator solid material.

The main scope of present paper is to elucidate the influence of the heating surface shape upon the

effectivety of the contact melting process. Defining efficiency of the heating surface as a ratio fl = N o / N

we'll have

1

.ilc_1 + Ste exp(- Pert / D -:-dr/) (31)
13 E 0 _

Equations (23), (24), (27)-(31) simulate heat and mass transfer processes in contact melting problem

with the accuracy of 0(KJ. They are convenient For prediction of contact melting process for materials

with variable physical properties such as different kinds of rocks and sands.

When the physical properties of melt are constant (for example in the case of ice melting) equations

(17), (23), (24), (27), (28), (30), (31). allows the considerable simplification.

6(R '+I _R "*l)
US= (v + 1)R'H r/(1 r/)

dR
u = ----r/ (3--2)I)

. ds

,; R ,+_ _ R "+x12 t"

P=_ J, H3R"
ds

I

0--- EHexp(PeH/2 f exp[1SeH)13(1 0.5q)]d_
II

2 2 Pert
N = n(R 2 - R i)Eexp(--_-)

I__)(1 + Ste exp(
/_- E

(32)

(33)

(34)

(35)

(36)

(37)

3. RESULTS

Numerical prediction of u,, u,, P, H, O, _ and other quantities of interest is carried out for ice and

rock thermodrilling conditions. All the calculations of rock melting are based on equations (23), (24), (27)

--(31). Relatively complete description of basalt physical properties at high temperature is available in [5,

6]. Non-linear equation (27) is solved numerically by the iteration procedure. After this other quantities

are obtained automatically in a view of equations (23), (24), (28)--(31). As the initial estimate of iterative

process solution (35) is chosen. When the ice boring process is investigated formulae (29), (32)--(37) are

used. The values of ice physical properties one can find for example in [4, 17, 19]. Effectiveness of the !/

[heating surface is estimated by the value of parameter/? It is shown in previous works [4, 17] that in com- .J
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wi: etc.) thermopcnetrators same power

rt c pa abo]ic shaped pcnctrator attains the highest melting velocity, Therefore present paper is devoted to

more detail analysis of contact mclting with parabolic heating surface. The elongation of [he s:,:f'acc is

characterized by the value of shape parameter A. The results of numerically predicted cfficicncy as a func-

tion of A for ditTcrent conditions of ice and rock mching are plottcd in Fig. 2. Numerical results i,adicates

that for slow melting when heat transfer in the molten layer is of minor significance and in the contrary

the heat dissipation increases the fiat heating surface (A < 1) is more cKccfivc. Vice versa for high speed

melting the heat energy rate in the melt is dominating in comparison with the dissipation in surrounding

solid material. So in this case the elongate form of heating surface is prcfcrablc. According the calcula-

tions presented in Fig.2 there is the interval for melting velocities when the definition of the optimal shape

is not trivial. For toroidal penctrator (v = 0)and ice melting conditions 20 < Pc< 55; for non-coring

penetrator (v= 1) and rock melting conditions 40< Pc< 75. In order to find the maximum of/_ and the

corresponding value of A, the derivative of /_ with respect to A is calculated. When the problem is

non-linear and the physical properties of the melt depend on temperature the derivative is calculated

numerically; when/Z, c, 2 are constants it is feasible to calculate/_', analytically. In a view o£ relationship

(37) the equation/Y, = 0 for computation of the optimal A can be written as follows: -- Pert' E - E'
A A

=0.

This simple equation is solved by dividing segment in half method.

L

NOMENCLATURE

A - shape paramctcr of the heating surface;

a - thermal diffusivity;

c - specific heat;

d - characteristic size of heating device;

F - external force;

G - mass force;

r, z - cylindrical coordinates defined in Fig.l;

r_- internal radius of the heating device;

r 2- external radius of the heating surface;

s_, s2- coordinates of the end points of generating curve of the heating surface;

t - temperature; #-velocity of the molten layer;

v,, o r- longitude and transverse velocities in the molten layer;

V - melting velocity;

s,_- longitudinal and transverse local coordinates in the molten layer defined in Fig. 1;

W-specific axial load from heating device side (W

/_- efficiency;

F- generating curve of surface 7. ;

2- thermal conductivity;

/z-dynamic viscosity coefficient;

p- density;

tr, "r- parabolic coordinates.

g -accclcration;

h -mclt laycr thickness;

L - latent melting heat;

P - pressure;

Q - he_tL flux dcnsity;

F
)

n(r_ 2-- rl)
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Indices:

L- liquid phase;

s - solid phase;

* - critical point;

All the non-dimensional paramcters, numbers and functions are determined in the text: (2), (5), etc.

h - heating surface;

m - mching surface;

oo - value in infinite point.

L
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Fig. 1. Schematic representation of the contact melting process:l-heating device, 2-melting solid,

3-molten layer.
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Fig. 2. Flficicncy # as a function of shape paramctcr A.

a) Ice boring conditions; ,, = 0, R. = 3.2 (ring shaped penctrator)

b) Rock boring conditions; v= 1, R. = R l= 0 (non-coring pcnetrator)
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F DESIGN OF 3-DIMENSIONAL COMPLEX AIRPLANE CONFIGURATIONS

WITH SPECIFIED PRESSURE DISTRIBUTION VIA OPTIMIZATION
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ABSTRACT: A subcritical panel method applied to flow analysis and

aerodynamic design of complex aircraft configurations is presented.

The analysis method is based on linearized, compressible, subsonic flow

equations and indirect Dirichlet boundary conditions. Quadratic dipol

and linear source distribution on flat panels are applied.

In the case of aerodynamic design the geometry which minimizes differences

between design and actual pressure distribution is found iteratively using

numerical optimization technique. Geometry modifications are modelled by

surface transpiration concept. Constraints in respect to resulting geometry

can be specified. A number of complex 3-dimensional design examples are

presented. The software is adopted to personal computers, and as result an

unexpected low cost of computations is obtained.

INTRODUCTION

One of the most important task in aerodynamic design is such airplane shape

definition which fulfills the following requirements: low CD, high MA and
DD

CLHAx, appropriate boundary layer stability and stall progression, elimination

of shock waves etc. This, however, depends on appropriate pressure

distribution on the surface. It is extremely difficult to fulfill all these

requirements for complex, 3-dimenslonal airplane configurations where strong

interference effects occur between aerodynamically close coupled elements.

Optimal design of each element does not lead to optimum of configuration

because of adverse interference effects. But in principle it is possible to

design such configurations with neutral or even favorable interference, where

interaction between airplane components gives benefits and leads to better

global characteristics then those of separated elements. It is impossible to

realize such a configuration only on the ground of experimental technique.

Computational methods of aerodynamics, which have developed quickly during

last 30 years enable, in connection with the aerodynamic concepts worked out

at this time ("roof-top", "peaky" etc.), to realize many interesting designs.

The problem can be i11ustrated by wing-nacelle-pylon configuration. In the

past the nacelles were shaped as axisymmetrical body and mounted to swept wing

by plane pylons. A strong adverse interference occurs leading to loss in J
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Fisobar sweep, higher local Mach numbers and shock waves, losses in lift

coefficient at design angle of attack etc., creating the lower aerodynamic

efficiency. Later the method of designing for neutral interference was worked

out, where nacelle and pylon were shaped along stream lines of isolated wing

in order to minimize interference. It is difficult however, even now, to

design such configurations with favorable interference.

Slightly simplifying the problem we can consider three kinds of design

treatments in aerodynamics using computational methods:

I. Design by trial and error method

2. Direct optimization method

3. Inverse design method

The first is direct transformation of the wind-tunnel technique on the

computational ground, where wind-tunnel is replaced by computational system

and the process of "aerodynamic model manufacture" and "testing" is

significantly cheaper and faster. Experienced aerodynamicist analyses

results, specifies the needed modifications and the process is repeated until

satisfactory computational results are obtained.

In the second method geometry which minimizes aerodynamic object function

(such as drag) and fulfills additional constraints is found directly without

external detailed considerations about flow properties. This method,

conceptually very attractive and fully automated, can not be actually

performed in the case of complex configurations because of very high cost

and many times too low accuracy of up-to the date flow analysis methods which

lead to so called "numerical noise" and make impossible to find real solution.

The third method is actually the most effective and refined method

acceptable in practice. It consists of two steps. First is such a pressure

distribution specification which fulfills aerodynamic requirements. In the

second step the geometry corresponding to this pressure is calculated using

inverse method. It is obvious that the possession of the appropriate inverse

method is worthy. The method presented in the paper is actually probably the

most general inverse method applied to subsonic flow regionl which allows to

design of real complex configurations even via interference effects.

FLOW ANALYSIS

The method is based on linearized theory of compressible flow [I].

The Prandt1-Glauert .equation

(1)
J
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_s assumed to govern perturbation velocitythe potential in the flowfield.

The linearized mass flux boundary conditions on external surface are applied

W.n = (V + w).n (2)

and express the intensity of mass outflow through the surface.

w is the perturbation mass flux vector defined by

w = (_2_x,_y,_ z) (3)

The second order pressure formula [assuming V = (I,0,0)]

= _ (^2_ 2+ 2+ 2)
I CP2 -2_x _x _y _z

(4)

is applied to find aerodynamic forces and moments, and isentropic

formula is used to express pressure distribution on the surface:

Cp - 2 1 + k----_l M2 1 - V.V - ] (5)

kM_ 2

Applying Greens Theorem to the flow£ield the perturbation

velocity potential on the surface can be expressed as:

I

2r .oi Irr r.n+%# QP £1dS+--II<_>82 0P 0ds
Ee%=_ rE r3J 0 4_JJ 0 r 3 o

Sb Sw

(6)

where <_> is the jump of potential across the wake and E is function of

position (respectively: 1, 1/2 and 0 for P in the flowfield, on the surface

and outside the flowfield). Equation (6) is solved by panel method based on

quadratic dipol and linear source distribution on flat panels and indirect

Dirtchlet boundary conditions (zero perturbation potential is specified on the

internal side of surface). Control points and unknown singularity parameters

are located in panel center of gravity. Jump of potential across the wake is

determined by Kutta condition: flow behind the trailing edge of lifting

surface must be tangent to trailing edge bisector. Finally the integral

equation (6) is replaced by system of linear equations of the form:

[,] :;: ___ _[j {  o_vo.o0} (7)

J
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Fwhich is solved to obtain the the surface andperturbation potential on jump

of potential across the wake. Velocity distribution on the surface is

obtained by numerical differentiation of perturbation potential and adding

the free-stream contribution. In the local panel coordinate system:

V = 8_/at + V .t
t

v = a_/as + v .s
s

(8)

INVERSE METHOD

The inverse problem is solved in the present method via optimization.

The method is extension of the previous design method of the author.

The requested geometry of configuration is searched in a form of sum of the

initial geometry and linear combination of basic design shapes:

ND

GEOMETRY = INITIAL GEOMETRY + _ X.o (i-th BASIC SHAPE) (9)

L 1

i=l

Coefficients X. are found from the condition of minimizing
1

the error in pressure distribution:

NP

E = T Wj° (Cpj-Cp_) 2 (I0)

j=1

where: W. - weight function of j-th point
J

D design pressure coefficient
Cpj -

Cpj - its actual value

using numerical optimization technique.

Direct application of panel method to find the object function brings

the high cost of computations. In the presented method the basic design

shapes are modelled by surface transpiration. The mass flux through the

surface which shift the strea_n surface with the distance h normal to the

initial surface is given by:

1 [ O (pUb) O (pVh) ]
- + (11)

WTR Pm _ _

The mean value of the transpiration over the panel is obtained by mass flux

Lbalance in the volume by body and modelled stream surface.enclosed surface J
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F

Fig. l Mass balance

over panel area

The incremental potential distribution due to surface transpiration

(i-th basic shape) is calculated from linear equations system similar to (7):

(12)

Potential on the new geometry is expressed as the sum o£ initial potential

distribution and linear combination of incremental potential distribution due

to basic shapes. The new velocity distribution is calculated using eq. (7)

with new potential value and unit tangent vectors taken from the new geometry.

Geometry redefinition is performed directly using eq. (9). The optimization

is performed by quadratic programing method. Additionally geometrical

constraints are introduced via penalty function. Gradient and Hessian of

object and penalty functions are calculated analytically which lead to high

accuracy and low cost. Because of nonlinear nature of the design problem it

is solved iteratively using geometry obtained after actual design iteration as

initial in the next one. Block diagram of the method is shown on the Fig. 2.

COMPUTER CODE

The method described above was coded in FORTRAN 77 language and implemented

on PC-Computers. Because of hardware limitations it is performed as a

package of programs. A11 basic parts of the method are performed by

separate computer program, which are sequentially started from batch file.

The software package consists of 13 programs including two methods of

solution of linear equations system (iterative and block Crout

decomposition) and post-processing program. The iterative method of

solution performs matrix modification and makes possible to use this method

even when other iteratlve methods do not provide the convergence.

It is possible to use up to 1200 body panels, 500 wake panels, 80 Kutta

oints, 1280 unknown singularity parameters (plus symmetry condition), and

Q._-Z

J
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1
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1
iI
tl
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1
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I
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W

G

o

Fig. 2 Block diagram

of the design method

63 basic design shapes. Flow analysis for PC-386/25MHz and I000 panels (plus

symmetry) took about 2S'-40' if using iterative method of solution and about

60' if Crout decomposition method is used. Design process took about 12' for

40 basic design shapes using Crout method. Using computer 486 computing time

is about 50Z shorter. Cost of such computations is unexpectedly low.

RESULTS

Flow analysis. To show efficiency and accuracy of the method results of

analysts of test cases from AGARD AG-241 are shown on Fig. 4 and 5. Results

for RAE WING and STRAKED WING with NACA 0002 profile is compared with

Datum Results of Ruhbert and Roberts.

S60 panels were used (40x14) for RAE WING and 640 (40x16) for STRAKED WING.

Computing time on PC-386/25MHz respectively I0' (iter)/16. H' (Crout) and

14'/23' It is seen excellent agreement with compared methods.

Full aircraft configuration design. It consists of wing, body, tall and

rear mounted nacelle and pylon. The geometry of the configuration is shown

on Flg. 6. A new pressure dlstrlbutlon (of "roof-top" type) is specified on

the wing upper surface. At all points of pylon where initial negative pressure

exceeds Cp = -0.5 this value was specified as design one. J
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38 basic design shapes of spline-support type were specified. The idea of

this type of shapes is shown on Fig. 3. Node lines on the surface in both

directions are specified and movement of the node of such network in

specified direction corresponds to the desired shape function. To find

movement of other points of the surface the interpolation spline is used.

The shape functions used correspond to:

-changes of upper surface section of the wing at four control stations

(wing-body-junction, D = 0.3, 0.5 and 1.0) corresponding to vertical

displacement of points with max. laying at 75%, 55%, 40%, 25%, 15%, 9Z and

4% of arc length (measured from leading edge to trailing edge)

-changes of wing twist at wing-body-junction, n = 0.5 and 1.0

-changes of fuselage width in the pylon region with max. at four stations

-changes of nacelle width in the pylon region with max. at three stations

Fig. 3 The idea

of spllne support

basic shapes

Geometrical constraints used:

-distance between network points near the trailing edge (for control the

trailing angle)

-distance between network points near the max thickness (for control the

thickness)

-distance between network points near the leading edge (for control the

leading edge radius)

-distance (in vertical direction) between leading edge and trailing edge

(for control twist) at three control stations

-distance between points of pylon (at pylon-fuselage intersection) and

symmetry plane (for control fuselage shape) at three stations

-distance between points of pylon (at pylon-nacelle intersection) and

symmetry plane (for control pylon shape) at three stations.

1042 body panels, 72 wake panels and 1068 unknown singularity parameters for

half geometry were used. Computing time using PC-386/25: analysis 78', design

cycle 14'. Isobar pattern on the initial geometry and after four design

L J
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_terations are on Fig.7. at four wing sectionsshown Pressure distribution

before and after designing are presented on Fig. 8 and pressure distribution on

the pylon on Fig. 9. The shape of body-nacelle region and isobar pattern is

shown on Fig. 10. The region of higher negative pressure occurs on the

fuselage and nacelle in front of pylon. Adding two shape functions modifying

fuselage in front of the pylon and specifying additional points with design

pressure, the result (after 4 iterations) as on Fig. ll can be obtained.

The convergence history of the design process is shown on Fig. 12.

Win_-body-underwing nacelle configuration. The geometry of the configuration

and details of nacelle region are shown on Fig. 13. 1160 body panels, I04 wake

panels and 1183 unknowns were used. The pressure on the wing-body alone

configuration was calculated. Results are shown on Fig. 14a (lower and upper

surface respectively). Pressure distribution obtained for this configuration

is used as design pressure for wing-body-nacelle. Adding plane pylon and

axisymmetrical nacelle the new pressure distribution and isobar pattern are

obtained: Fig. 14b. Isobar pattern on the wing after four design iterations is

shown on Fig. 14c, shape of pylon and nacelle on Fig. 15 and pressure at

subsequent wine sections before and after designing on Fig. 16. Shape of pylon

section before and after designing is seen on Fig. 17. 38 basic design shapes

of spline-support type were used. Wing wag changed at three control stations:

W = 0.4, 0.8 and 0.6. Four points on upper surface (x/c=O.03, 0.11, 0.27 and

0.80) five points on lower sumface (x/c = 0.06, 0.17, 0.33, 0.80 and 0.?2) and

twist at each of this stations can vary. Additionally four points of upper

nacelle contour (x/L = 0.38, 0.80, 0.63 and 0.81) and four points of pylon

mean line (x/c = 0.28, 0.80 0.78 and 1.00) were changed. The constraints, in

respect to wine thickness and twist, nacelle shape and pylon modification,

were specified. It should be noted that despite the constraints used are not

very restrictive some of them are active. As result, for example, pylon has

nonzero side force (it had tendency to bend more). Convergence history is

It is of value to show some aerodynamic coefficient for theshown on FIg. 18.

configuration:

Clwing Clnac-py I Cltota I Cmtota I

wing-body alone 0.8098 - 0.606 -0.1463

initial 0.4772 0.0081 0.875 -0.1482

designed 0.8098 -0.0008 0.605 -0.1439

Computing time using PC-386/28: flow analysis 84', inverse cycle 15'.

L J
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FDesiKn winA. research wing for jet-trainer type aircraftof transonic The

was designed via subcritical equivalent pressure distribution concept [3] by

the author as a part of research investigations on supercritical wing

performed at Aviation Institute in Warsaw (unpublished Report of Aviation

Institute in Warsaw). The supercriticml wing section (of slightly

peaky-type pressure distribution) was designed using finite-difference

method. Equivalent subcritlcal pressure distribution for swept wing (sweep

angle of leading edge 20.7 °, at 25Z chord 17.3 ° ) was calculated and used as

design pressure on the upper surface of the wing. The originality of the

method consist in including the off-design characteristics. By modifying

constraints it was forced max. pressure peak at high angle of attack and

low Mach number at about _ = 0.4, which suggest separation first at this

station. If max negative pressure was too high at the station under

consideration, the higher leadlng edge radius was enforced by constraints

(worsening, of course, the pressure distribution) and vice versa. 28 basic

design shapes were used: five kinds of changes of thickness distribution

along the chord at five control stations along the span and twist at three

stations. The geometrical constraints in respect to max thickness,

trailing edge angle, leading edge radius and twist are utilized.

480 body panels, 24 wake panels and 492 unknown singularity parameters were

used. The block diagram of the design process can be introduced as follow:

IINITIAL GEOMETRY I

II II

lop's andC!O RYO.K.
No

Cp-DES _ll

constraints _"b&sic shapes ]_(I

i
IANALYSIS at high _, low Ma I

i
I

Yes

i NEWCONSTRAINTS

N
I

e
t

w
e

r
D

a

e t

s i
i

o
g

n
n

Computing time (386/2S): analysis 9' (Crout), S' (Iter). In each design

iteration the flow, at high =, was calculated about 3 times. Resulting isobar

L J
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Fpatter'n and distribution at three wing sections are presented onpressure

Fig. 19. Geometrical parameters of the resulting wing are shown on Fig. 20.

Quite unexpected for swept wing RLE distribution along the span is seen. Max

of the leading edge radius occurs at 80Z of semispan. Max of pressure peak

(_=12 °, Ha=0.2) occurs at _ = 0.40. The drag divergence Mach number

obtained in wind tunnel tests is shown on Fig. 22 and beginning of

separation on Fig. 23 (unpublished Report of Aviation Institute in Warsaw).

It is seen good agreement with expectation.

CONCLUDING REMARKS

The method presented above shows great versatility in the case of design of

real, complex configurations. It has nearly no restrictions in respect to

the complexity of the geometry. The major limitation is the lack of

possibility to take into account modification of plan£orm of the wing and

necessity to fix leading edge point (twist can be changed only by moving

vertically trailing edge point). It is possible to take into account

interference effects in designing, that allows to obtain specified pressure

distribution on one element by changing geometry of the other.

Recently the method has been extended to the case of multi-point optimization:

the pressure distribution on different parts of the surface can be specified

for different angles of attack and the design process is performed at once.

The method is exceptionally cheap and efficient because of implementation

on PC-computers. The possibility to take into accounts some

characteristics at off-design conditions via constrains was shown also.
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Abstract -, '

Some ideas for using hodograph theory, mapping techniqi_es and method of characteristics to formu-

late typical aerodynamic design boundary value problems are developed. Inverse method of charac-

teristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows

with given shock waves.

Introduction

This paper is intended to illustrate a revitalization of classical tools of theoretical aerodynamics for

use on modem graphic workstation computers presently available to the design engineer:

The theoretical methods have their origins in the time before large scale numerical computing be-

came the standard approach for analyzing aerodynamic performance, about two decades ago these

tools were already operational for practical aerodynamic tasks. Transonic flows then posed challeng-

ing problems and analytical mathematical modelling was used to gain insight into various theoretical

and applied questions resulting from nonlinear model equations. The "Hodograph Method" gave an-

swers to many of such type problems. Similarly, the "Method of Characteristics" yielded practical re-

sults. Combination of both methods, more recently, has permitted inverse - or at least indirect -

formulation and solution of aerodynamic design problems.

Later, numerical methods became more important because of their general applicability but frequent-

ly they give only poor insight into a mathematical model underlying a described phenomenon. The

previous hodograph approach was somewhat complicated because of mapping procedures, but results
still serve as test cases for numerical methods.

Nowadays, while most of the successful analytical methods are used only for educational purposes,

we witness another type of tool emerging from developments in computer technology: Graphic

Workstations and even PC's provide powerful computation, illustration and documentation of results

to the model equations for fast aero analysis and design. Interactive methods are being developed to

provide a strong coupling of computer power and speed with the design engineer's experience and

strategies to obtain his design goals: For many applications we seem to have the knowledge base and

computer hardware to develop a variety of what may be called "Aerodynamic Expert Systems".

" ) Senior Research Scientist "') Visiting Professor, Permanent Address: _ _ _ _l_ _ _ _
Beijing University of Aeronautics and Astronautics, Beijing, China



In this situation we may want to recall classical "pre-CFD" methods because, if implemented to those

fast graphical desktop computers, they might be modernized and improved to easily give fast first

steps for aerodynamic design and optimization, and last not least to serve as educational tools.

In the present paper we illustrate the idea of combining fast classical aero methods with most recent

computer and software technology by using hodograph formulations and characteristics to obtain

some well known and some new plane and axisymmetric transonic and supersonic flow elements.

The fast computation and powerful graphic evaluation of results invite experimenting with conceptu-

al extensions: Here the hodograph method is extended to axisymmetric flows and a method of char-

acteristics for axisymmetric rotational flows will be presented and proposed for use of designing

more general three-dimensional flows.

Hodograph-based methods for transonic flows

The following review of an extended hodograph method is focused on transonic applications. For

two-dimensional isentropic flow this approach is wellknown in the literature, here the illustration is

carried out for plane flow and extended to small perturbation axisymmetric transonic flow - an option

widely unknown because the main purpose of the hodograph, linearity, obviously cannot be obtained

for axisymmetric flow.

Potential flow models

Isentropic flow assumptions result in a system of PDEs for potential • and streamfunction W with D

and Q suitably dimensionless density and velocity, and flow angle "O and velocity Q independent
variables:

1

OQ = _(M 2-1)Wo

(1)

Rheograph transformation: Beltrami equations

Here we use a modification of the hodograph variables: System (1) is transformed by using the

Prandtl - Meyer angle

Q

(2)
(Q = ])

as one independent variable instead of the velocity Q. The basic PDEs become
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O,, = jK_ o

• O = K'W v

(3)

with j = - 1 representing subsonic flow (where v < 0) and j = 1 for supersonic flow (where v > 0). The
coefficient

g

JIM2- 11 (4)

D

is, for isoenergetic flow and with (2), a function ofv only. So far any hodograph problem formulation

is just a matter of stretching from a (Q, O) - plane to a (v, O) - plane.

The technique stressed here involves further elliptic or hyperbolic mapping of the variables (v, O)

v = O t (5)

V t = jO s

which results in a transformation of (3) to become

Os = JKXlJt (6)

d_t = KtF s

Both (3) and (6), and also the Cauchy-Riemann or wave equations (5) are more generally named Bel-

trami equations. With K now a function of s and t this system of PDEs is linear. The first author has

made extensive use of it for transonic airfoil design [1, 2].

For the purpose of illustrating a generalization to axisymmetric flow, we use here the small perturba-

tion version of (5) and (6), with a notation

v-U

(7)

_ y1 +p]

where for plane 2D flow Pl = 0. Replacing the coefficient K by its leading term near sonic conditions,
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jK - vp2 (8)

with P2 = 1/3 results in the near sonic version of the systems (5) and (6), the compatibility relations

Vs = jYP'U,

(9)

= r"'U,

and characteristic equations

X, = UP2Yt

Xt = jU_2Y s

(10)

Now we see an elegant symmetry of these two coupled pairs of equations, each modeling a general-

ized axially symmetric potential, [3]. We can distinguish between various types of flow, depending

on the parameters j, pland P2. Linear subsonic (j = -1) or supersonic (j = 1) flow is described by P2 =

0, while transonic flow requires P2 = 1/3, with j both -1 and +1 for mixed type flow. With Pl = 0 or 1

we have plane 2D or axisymmetric flow, respectively. Mapping in various aero or fluid dynamics

case studies can so be reduced to one generalized system of basic equations [4, 5]. Any one of p] or

P2 being equal to zero yields linear equations, but for near-sonic axisymmetric flow a weak nonlin-

earity persists, which seems to be the reason why this formulation has not been used for aerodynamic

problems, except in the one work by Hassan [6].

t

rl r

s

....................................................... ;E/I l_

Fig. 1: Rheograph or Characteristics plane iptic (shaded) and hyperbolic (cross-hatched)

domain for mixed type model equations

Self-similar solutions

We see the relation of Beltrami equations to conformal and characteristic mapping: singular solutions

in classical hydromechanics have helped to understand many aerodynamic phenomena, so we wish to

use the system for axisymmetric near-sonic flow also for solving some of its typical features.

Figure 1 illustrates the working plane (s, t): neither physical plane (X, Y) nor hodograph plane (U,

V), it is suited for a definition of boundary and initial value problems which require a parametric for-

mulation. In transonic flows, the mixed elliptic/hyperbolic type subdomains require contact along the
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mapped sonic line, here suitably fixed at s = 0. Earlier applications and illustrations [5] explain the
use of the name "Rheograph" and "Characteristics Plane".

Some classical and many new phenomena may be modeled from the general harmonic set of self-
similar solutions in polar coordinates

U = r n. h (q))

V = r n+pl "b •

X = rb+P2'n.f((p)

(11)

Y = rb.g ((p)

which require only solving a set of four coupled ODEs for the generalized harmonic functions h, k, f

and g, with two free parameters n and b.

2,0

1,5

f.O

05

-05

-f.O

-f6

.... i .... i .... i

Functions h, g, k. f

IL ...................

, _,, 1 .... I .... i

-11 -0.6 -.O.f

mh

..... g

..... k

, , , L , . .

0,4

Fig. 2: Quasi-harmonic functions for far-field singularity U,V(X,Y) modeling flow past a body
of revolution in sonic free-stream Mach = 1

Example: Guderley" s far-field singularity of an axisymmetric body in sonic flow

M. Klein [7] has investigated these coupled potential flow problems calculating some plane and axi-

symmetric cases with different exponents n, b. This was done prior to using some gained knowledge

for setting up more general boundary/initial value problems for numerical solution of (9) and (10)

with a Poisson solver and the method of characteristics on a graphic workstation. One case studied in

detail is the solution for simulating the flow past a body of revolution in sonic free-stream. This is a

classical transonic problem first solved by Guderley 1954 [8] and elegantly confirmed by Mailer &

Matschat 1964 [9]. Their work suggests use of (11) with a ratio of the exponents b/n = - 7/9. In fact, it

is just this ratio which yields a physically reasonable solution.



Figure 2 illustrates the result: Graphic CFD postprocessing software is used to show the U and V dis-

tribution in the physical meridional plane (X, Y). This example may be used to illustrate the use of

working in the Rheograph plane, to understand flow details with nonlinear model equations better

and to have more freedom to suitably model boundary values. In transonic flow, meaningful solu-

tions frequently can only be obtained by formulating boundary conditions in an indirect, inverse way,

- this is the basic reason why some practical design problems are easier solved in inverse mode.

For the following transonic 2D example (Pl = 0) we return to the systems (5) and (6), the Rheograph

equivalent of the 2D full potential equation.

Example: 2D transonic nozzle exit

Equations (5) and (6) for supersonic flow j = 1 transform into compatibility relations

d_l =1
1] = const

and characteristic equations

=-1

de K
1"I = cons!

= const K

(12)

(13)

which are the basis for a rapid linear method of characteristics. Implemented on a graphic worksta-

tion, solutions may be obtained and visualized extremely fast, we use the method to set up a knowl-

edge base for interactive transonic design expert systems with advanced graphic ple- and

postprocessing. Flexible geometry input for boundary conditions was used by Gentner [ 10] to define

a 2D sonic throat and the downstream accelerated exit flow. With initial data for Mach number, flow

angle and physical coordinates along the t-axis (Fig. 1) a first calculation determines the solution of

(12) and with K(v(_,rl)) available, the second step is the solution of (13).

Figure3 once more stresses the difference between hodograph and Rheograph or Characteristics

plane: The flow structure may map into a multivalued hodograph, while the Rheograph may be con-

trolled to show a single-valued characteristics grid.

The result with a non-symmetrical exit contour designed by prescribing velocity distribution along

the nozzle axis is depicted in Figure 4. The idea here was the combination of (known and well-devel-

oped) potential flow modeling with mapping transformations based on hodograph theory (also

known but considered complicated), and the use of powerful workstations (helping with rapid com-

putation and graphic visualization). The above isentropic model equations are either linear or weakly

nonlinear. In the following, design problems involving non-isentropic flow will also be solved by the
method of characteristics.
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Fig. 3: Unfolding the multi-valued mapping of a Laval-nozzle (a) supersonic hodograph (b, c) to

single-valued triangular domains (c) in the Rhea)graph plane

f ....... t

t. : • ti_.., - -
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1 1[ .... _-.............
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Fig. 4: Laval nozzle exit designed from sonic line Cauchy data and velocity distribution (Mach,

flow angle) along a curved axis. Color graphics illustrate stream function / contour.
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Supersonic flows with controlled shock waves

Before we apply the method of characteristics to a problem involving oblique shocks, it should be il-

luswated that given initial data in the Rheograph working plane directly relate to Cauchy data in the

physical plane, the marching direction starting from AB and progressing towards C runs approxi-

mately normal to the resulting local flow direction, Fig. 5. We call this and related numerical ap-

proaches to compute the flow field "Cross - (stream) Marching". This will be useful for supersonic

design applications where we seek to control the shape and strength of occurring shock waves.

It < "_<'[B '_A:

U'(x),A

/

U(t), /! /V,(t),

X.(t),y(t) __B C YT A_g/ X_

C

Fig. 5: Cauchy Initial data in characteristics plane (s, t) and in physical plane (X, Y)

Cross-Marching from given shock waves

As can easily be seen from a flow field with an oblique shock wave and its supersonic post-shock

characteristics, there is only the possibility of Cross-Marching since the initial data do not allow for

marching downstream, Fig. 6. A portion AB of oblique shock wave determines a flow field ABC and

a limited portion AD of the contour compatible with the given shock wave. A larger region of depen-

dence ABEF and contour ADG are obtained if also the flow at a segment BE at the axial exit station

is prescribed, see [11] for some remarks about numerical consequences of such given input.

A

C

D

E

G

B
a b c B

Fig. 6: Basic steps of downstream marching (a) and Cross-Marching (b), depending on initial

data curve AB. Computing the flow behind oblique shocks (c) requires Cross-Marching.



Numerical methods of characteristics have been developed for plane and axisymmetric, for isentrop-

ic and rotational flows. Prescribing arbitrary shock waves results in rotational flow because of shock

curvature. Cauchy initial data for flow field computation therefore require coordinates, velocity com-

ponents and entropy distribution along the prescribed shock geometry. For Cross-Marching (Fig. 6b),

the iterative calculation of entropy convection along the streamlines requires an extrapolation of data

BD---_C, while for the usual downstream marching (Fig. 6a) an interpolation of data A--_D_---B is
needed.

The following two examples were obtained with a new numerical Cross-Marching method of charac-

teristics for axisymmetric isentropic or rotational flow by the second author [12]. A flexible input ge-

ometry generator and workstation implementation lay ground for further extensions and use for

aerodynamic design tasks.

Example: Segment of a conical flow field

As a first example for the new method of characteristics a part of the flow field past a circular cone is

computed. Input data are the upstream Mach number, a set of coordinates of and post-shock condi-

tions behind the given conical shock wave with given angle. Fig. 7 illustrates the characteristic grid, a

selected integrated streamline and reveals a limit line singularity along a ray through the cone vertex,

well within the solid cone which is compatible with the shock cone and Mach number. The case is

well-suited for checking the accuracy in comparison with the solution of the Taylor-Maccoll ODE;

graphic visualization of the Mach number and flow angle distribution must show constant values

along rays through the cone vertex, though its location is not part of the input data.

a b c

Fig. 7: Ideal gas 0' = 1.4) flow past a circular cone. Given Mach = 2, shock angle = 45 ° (com-

patible with a solid cone of 27.32°). Choice of shock segment size relative to axial distance:

Characteristics grid (a) with or (b) without limit cone of -16.3 °. Every third grid line shown.

Color graphics (iso - Mach) for flow field conicity check (c).

Computation time on a Sun Sparc Station: 6 seconds.



Example: Segment of a flow field downstream of a curved shock

A slight variation of the input shock segment geometry brings rotation to the flow field downstream

of the shock. Color graphic visualization of the velocity and pressure distribution shows a strong de-
viation from conical structure, Fig. 8.

C

Fig. 8: Flow with a curved shock wave. Given Mach = 2, shock angle varies from 50 ° to 45 °.

Characteristics grid, surface streamline (a). Color graphics for iso-Mach (b) and iso-flow angle (c)

Design of three-dimensional flow fields

The exploitation of plane and axisymmetric inviscid flow fields for the definition of flow patterns

generated by three-dimensional bodies in supersonic flow has been used since about three decades

when Nonweiler [13] created the first "waveriders". In recent years renewed interest originated in

such configurations for generic lifting aerospace transport vehicles and supersonic inlet shapes [14].

The first author recently contributed an idea to this research which is aimed in generalizations of

waverider shape definition by applying conical flow solutions with constant shock strength but axial

distance of the shock segments varying along span [ 11]. The idea is based on the assumption of a lo-

cal axisymmetry in every 3D flow, which is well defined in an"osculating plane" if the shock wave is

known, Fig. 9. The method to generate three-dimensional configurations requires little more effort

than evaluating one Taylor-Maccoll conical flow solution. Only the Mach number, shock angle, lead-

ing edge and shock profile in the exit plane need to be prescribed. Based on this method a very rapid

interactive design code was developed by Center et al [15]. Numerical analysis with an Euler code

shows a striking agreement of the numerically captured shock location with the design solution,

which makes it worthwhile to further develop such techniques.

The method of characteristics with Cross-Marching developed here may be used for such further de-

velopment, with the possibility of exploiting also rotational flow fields to find 3D body contours.

This method is then equivalent to solve the 3D Euler equations in an inverse design mode, rapidly
carried out in an interactive fashion on the workstation.
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Fig. 9: Local conicity in osculating plane of a flow behind given rule surface shock wave: Design

of generalized super/hypersonic waveriders.

Conclusion

We have tried to illustrate some ideas to extend classical theoretical methods for the aerodynamics of

inviscid, compressible flows. The purpose is an implementation of these tools to develop software on

fast modern workstation computers which enables the design aerodynamicist to perform rapid early

stage design studies with aerodynamic expert systems, but also to develop these techniques toward

convincing educational programs for students. Transonic and supersonic aerodynamics require in-

verse problem formulations if flow properties should be used optimally for design goals. This was

shown using the method of characteristics for inverse applications.
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SUPERCRITICAL BLADE DESIGN ON STREAM SURFACES OF REVOLUTION
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The described method solves the inverse problem for supercritical

blade-to-blade flow on stream surfaces of revolution with variable

radius and variable stream surface thickness in a relative system.

Some aspects of shockless design and of leading edge resolution in

the numerical procedure are depicted. Some supercritical compres-

sor cascades were designed and their complete flow field results

were compared with computations of two different analysis methods.

Nomenclature

A area

BN blade number

La Laval number

R radius of stream surface

W magnitude of velocity vector

d profile thickness

h stream surface thickness

1 profile chord length

m meridional coordinate

s arc length

t cascade pitch

w velocity vector

x chord coordinate

z axial coordinate

F circulation

Q axial velocity density ratio

0 circumferential angle

'_ flow angle

inclination angle of stream surface

P density

potential function

_ stream function

angular velocity

Subscripts:

1 upstream

2 downstream

BW blade wake

SW side wall

ax axial

m meridional

u circumferential

Um Transition



INTRODUCTION

Increasing requirements on turbomachines concerning efficiency,

compact construction and density of power lead to aerodynamically

highly loaded blades. The admissible blade load and the profile

losses are determined by the boundary layer development. High

pressure ratios per stage and high turning of the flow increase

the risk of boundary layer separation with the result of strongly

growing losses. This problem is intensified by the risk of arising

compression shocks. They are caused by the supercritical through-

flow (with local supersonic regions), which is necessary for high

mass flow density.

In regions with pressure rise, boundary layer separation can only

be avoided by careful blade profiling for flow with minimum loss.

In the past, turbomachinery bladings have mostly been designed

with the aid of profile families. But in this way, depending on

the plurality of parameters, a loss minimization is not possible.

Especially in the transonic velocity region this procedure is in-

sufficient since shockfree solutions can be found with only poor

chances by iterative contour variation. In this region of maximum

mass flow density very small variations of the geometry are con-

nected with very high changes in the flow velocity. Therefore, it

is convenient to prescribe the physical quantity, where the great

changes appear, and to calculate the small but important varia-

tions of the geometry.

This alternative is given by inverse design: Starting from a pre-

scribed shockfree velocity distribution, the corresponding profile

contour is calculated numerically. By this means a perfect tai-

loring of the blade to the required turning problem is possible.

Up to now a perfect three-dimensional inverse design of flow

fields in turbomachines is not executed since this problem is

quite overdetermined. At present a standard procedure is to start

a quasi three-dimensional computation by calculating the flow on

meridional planes (S) by an analysis code (duct- or through-flow)

to get the starting _alues of the calculation on several blade-to-

blade planes (S I) distributed along the blade height.

This multi-section design of the blade can be realized by inverse

computation. The following inverse computation method is an ex-

tension of the former cylindrical version [1,2] to the design on

stream surfaces of revolution with variable radius and variable

stream surface thickness in a relative system. This development is

a further step to approximate the real physical behaviour of the

flow. The method is applied to the multi-section design of a

three-stage research compressor which is now in construction.

Computations for comparison were carried out with two different

analysis codes.
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FUNDAMENTAL EQUATIONS OF THE METHOD

Since inverse design strives for low loss flow without shocks and

boundary layer separation, Prandtl's concept of distinct potential

flow and boundary layer calculation is applied. In Fig. 1 the

fundamental process of the method is sketched. The method computes

the steady compressible potential flow in the passage between two

blades of unknown shape from far upstream to far downstream on a

stream surface of revolution. Besides the upstream and downstream

velocity vector, the velocity distributions are prescribed along

the arc length of the stagnation streamlines with their periodic

parts in the upstream and downstream regions and along the blade

suction and pressure sides. In this way velocity gradients can be

prescribed, which is important for the boundary layer development

and a prerequisite for loss minimization. Moreover, radius and

thickness of the stream surface of revolution are prescribed along

the axial coordinate. These boundary conditions are transformed by

integration into the computation plane with stream function

coordinates and their normals. The computation grid is rectangular

in this plane and contour adapted in the physical plane.

Therefore, no interpolations are necessary on the boundaries.

The equations of continuity and motion for steady, isentropic flow
on a stream surface of revolution are

 [OhWul [ohRwo]
ae 8m

: 0 (I)

aWm u = 2 _ R

ae am am
(2)

with the isentropic relation

p = f (W, _, R) (3)

The appearance of a variable stream surface radius in the

fundamental equations requires a different treatment of rotor and

stator flows since in the relative system of the rotor an energy
alteration is connected with a radius alteration. So the relative

velocity W can no longer be prescribed by a potential. In the ab-

solute system (following Vavra [3]) an equivalent potential _Acan
be defined by

?'_A = VA = w + ii_ R and ? × v A = 0 (4)

But the contour velocity distribution has to be prescribed in the

relative system, thus one coordinate direction is given by the

streamlines in the relative system. Together with the potential

lines normal to the absolute velocity an oblique-angled coordinate

system results, Fig. 2.



At velocities W _R and flow angles 8 _ n/2 (e.g. in the stagna-

tion point region) the angle a approaches zero so that both co-

ordinate directions coincide. Following from numerical reasons

this system consisting of an absolute potential and relative

stream function is inconvenient for use as a computational grid.

The potential-streamfunction-plane is the computation plane of the

inverse design method. Furthermore, for using it in the rotor the

equation of motion is reduced to 7 w = 0. The consideration of

the rotational character of the flow occurs by variation of the

total quantities dependent on the stream surface radius. (Another

consideration by definition of a transformed potential is pub-

lished in [4,5].)

Since the critical sonic velocity is no longer constant, because

of the variation of the total temperature, it is no longer appli-

cable for normalization of the velocity like in the stator case.

Hence, the upstream velocity W 1 is now applied for this purpose.
The decision which difference operator for consideration of the

type-dependence of the differential equation system has to be

applied is taken by the magnitude of the local Mach number.

By transformation of the fundamental equations into the potential-

streamfunction-plane and elimination of the flow angle the full

potential equation follows [6]:

CI. 021n W O21n W [ _91n W I [ 01n W ) 2
Oq2 + C 2' + C 3' , + C • ,

aln W _in W

• + C 6 + C 7 = 0+ C5 cg_p " ,9

with Cl...C 7

and W

= f (W , _, R, h)

= W/W 1
= La

for the rotor

for the stator

(5)

The flow field is computed by the solution of the corresponding

difference equation system applying relaxation combined with

multi-grid. The change of type (elliptic-hyperbolic) from sub-

sonic to supersonic flow regions depending on the sign of the

coefficient C 1 is considered by modified difference equations. The
transformation of the solution back into the physical plane is

performed by integration of the equations of continuity and

motion. It yields the field boundaries, i.e. the blade profiles

and the cascade geometry.

Fo_ solving eq. (5) the dependence of the radius on the potential

an_ stream function R = f(_,_) is necessary. Since only the axial

development R = f(z) is known by the prescription, this relation

can only be discovered by an additional iteration in the course of

the solution process. The radius distribution has to fulfill the



condition of constant values in circumferential direction. Normal-
ly the same is true for the stream surface thickness. Moreover,
the desired values of turning angle, pitch-chord ratio or blade
thickness distributions are attainable by iterative variations of
the prescribed boundary values (which are selfacting included in
the code). The whole geometry of the problem is always the result

of the computation and therefore completely unknown at the

beginning.

CIRCULATION, LEADING EDGE RESOLUTION, SHOCKLESS DESIGN

The profile circulation necessary for the desired turning, follows

from (s. Fig. 3):

2 _R 1 2 _R 2
= .-- • (6)

Fp _ _-d_ - W l'cos_l BN + W 2"cosl3 2 BN'QBW

The line integral of the velocity along the computation grid

boundary can be converted by the law of Stokes into an area inte-

gral

The rotational vector _ indicates in axial direction, d_ is

perpendicular to the through-flowed area. For the stator (_ _ 0)
and for a rotor with constant radius (_ li d_) the value of the

line integral equals zero. Because of the reduction of the equa-

tion of motion this is also true for rotor flow with varying

radius. The additionally existing circulation inside the computa-

tion grid is thereby neglected.

The profile circulation which is necessary for the actual turning

problem and which should be rendered by the prescribed velocity

distribution at the beginning of the design process is

2_'RI [ R2 1 Wl.COSSl ] (9)
Fp = BN " W2"c°sS2"R_ QBW

The circulation inside the computation grid neglected in the rotor

case with varying radius can be estimated in maximum if the flow

conus area divided by the blade number (i.e. vanishing profile

area) is assumed as upper limit for the integration area:

_ _'d_ = 4"2nBN " I R22 _ RI2 ] (i0)



The relative deviation (refered to the circulation of the reduced

equation of motion) is

- 2"_'n'R I' _ - 1

= w__.R!.
WI" -c°s_l + c°s_2"Wl R1 QB

In the case of compressor cascades (S 1 _ 90 ) the reduced equation
of motion yields lower circulation for increasing stream surface

(R^/R. > I) and higher circulation for decreasing stream surface.

In_stalndard cases the deviation amounts to less than 5 percent

according to a turning angle deviation of less than 1 degree.

The leading edge region of a profile has special requirements for

the numerical aspects of a computer program for calculation of the

flow around an airfoil. In the design method this difficulty be-

comes especially clear since even the prescription data - the

velocity distribution on the boundaries of the flow field to be

computed - show the strong gradients in the stagnation point

region (Fig. 4). This area can be recorded only insufficiently in

an equidistant divided computation grid.

For appropriate resolution of the blade nose region it was found

that the number of points on the flow field boundaries should be

up to 24 or 25 times higher than that of the normal grid. Thereby

local grid refinement is provided for the regions with steep gra-

dients. For smaller point distances the possibility of emboxing of

refinements was established. In a corresponding fitted arrangement

a gradual transition of the mesh size follows. This is especially

favourable for the accuracy of the solution. For even higher accu-

racy, a feedback calculation can be performed which uses the

results of the fine grid for recalculation in the coarse grid in

an iterative way with overlapping boundaries of both regions.

In case of velocity prescriptions on the boundaries of local

supersonic regions an "ill-posed problem" is treated, i.e. no

physical solution may exist. Numerically this often leads to the

formation of oscillating shocks in the flow field, shown in

Fig. 5. If they are weak enough, a provision for cancellation of

these shocks is given in Fig. 6: Following the plotted character-

istic directions in the supersonic region from the concerned

region to the corresponding boundary values, these values can be

modified for generation of additional expansion waves to remove

the shocks [7].

RESULTS

The first example is a cascade for a compressor stator hub section

with supercritical flow (local supersonic region on the suction

side), Fig. 7. The high subsonic velocity La 1 = 0.90 is deceler-
ated to the downstream value L_ = 0.593 by a turning angle of 25
degrees and a relatively high _itch-chord ratio of t/l = 1.0 .

ax
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The stream surface radius R increases by 30 percent from upstream

to downstream and the stream surface thickness h decreases by 25

percent in the same direction. Their prescribed slopes dependent

on the axial length z are given in Fig. 8. The curves of the inner

and outer radius of the stream surface of revolution consist of

cosine slopes, the maximum angle of inclination of the stream sur-

face is 6 = 25 degrees. In the cascade region the stream surface

thickness distribution follows a cubic parabola, in the upstream

and downstream region it is calculated by constant flow area.

In the upper part of Fig. 7 the full line shows the prescribed

velocity distribution on the blade suction and pressure side. This

roof top distribution with maximum Mach number of 1.19 (La = 1.15)

was chosen for separation-free flow with high loading. On the suc-

tion side transition takes place at the beginning of the pressure

rise at 31 percent of chord length (at Re = 4.7"I0 b and Tu = 4%).

In the lower part of Fig. 7 the computed profile shape is plotted.

The dashed line marks the contour of the potential flow computa-

tion from which the manufacturing contour (full line) is derived

by subtraction of the boundary layer displacement thickness (com-

puted by Rotta's integral method [8]). The complete cascade geome-

try and the flow field characterized by the (full) lines of con-

stant velocity (with the sonic line La = 1.0) are shown in Fig. 9.

The cascade geometry data were used as input for the analysis code

of L_cking [9]. The results, the contour velocity distribution

(crosses in Fig. 7) and the velocity distributions in the flow

field (dashed lines in Fig. 9) agree well with the distributions

of the inverse code, even in the supersonic region.

Moreover, in Fig. i0 the course of the lines of constant radius

(dashed-dotted), which can only be calculated iteratively (see

above), coincide well with the demanded circumferential direction.

In Fig. Ii the prescribed velocity distribution of a rotor tip

section (n = 3600 rpm) is plotted together with the resulting

profile shape (both full lines). Despite of the low turning of 6

degrees, due to the high upstream velocity of La = 0.866 and the

high pitch-chord ratio of t/l = 1,761 the loading is high enough

to require local supersonic _ow on the suction side. In Fig. 12

the cascade geometry and the flow field consisting of lines of

constant velocity is drawn, showing the great stagger of this

design. The geometry of this result was again used to compute the

velocity distributions for comparison by the finite volume method

originating in P.W. McDonald [i0]. The crosses in Fig. II and the

dashed lines in Fig. 12 exhibit satisfying agreement with the

design computation (full lines).

The velocity distribution of the rotor hub section (Fig. 13)

belonging to the preceding rotor tip section was mainly influenced

by a desired maximum thickness of the profile (in consideration of

structural reasons). Therefore, high velocities appear on the

suction and pressure side without high aerodynamic loading. The

design on stream surface with radius increase of 14 percent (full

line) is compared with plane flow design for equal upstream and

downstream velocity vectors. It is to be seen that in the plane



flow case higher circulation is needed for the same turning prob-

lem but a thinner profile results compared to the design on

increasing radius. In Fig. 14 the cascade geometry is demonstrated

and the isolines of the velocity are compared with the results of

the finite-volume method [I0]. In the front part of the flow

channel including the local supersonic region the velocity field

compares well. In the rear part, refering to a local aft-accelera-

tion behind the supersonic patch the coincidence of the isolines
is somewhat disturbed.

CONCLUSION

The present extended inverse method seems to be an effective

procedure to design highly loaded axial compressor cascades on

stream surfaces of revolution. It produces accurate results

compared with complete flow field results of other methods and was

successfully applied to cascade and multi-section compressor blade

design.
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Fig. 4: Computation grid of a compressor cascade in the flow plane with

velocity as height coordinate, demonstrating the resolution of

of steep gradients in the stagnation point region.
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Fig. 10: Field distribution of Laval number (sonic line dashed,

increment ALa= 0.025) and lines of constant stream

surface radius (dashed-dotted) for the stator hub section.
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Comparison of Laval number distributions on the

blade between design and analysis calculation on

stream surfaces of revolution for the rotor tip

section.
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Fig. 12:

Field distributions of Level number of design
calculation {full line, sonic line dashed-

dotted} and analysis calculation {dashed line,

sonic line short dashed) for the rotor tip
section (increment &La - 0.5).
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F APPLICATION OF DIRECT INVERSE ANALOGY METHOD (DIVA)
AND VISCOUS- DESIGN- O-PTIMILFATIONTECHNIQUES

E. Greff +, D. Forbrich* and H. Schwarten** .... _:' _
Deutsche Airbus GmbH, Dept. of Aerodynamics, Bremen F.R.G. -

ABSTRACT

A direct-inverse approach to the transonic design problem was presented in s
initial state at ICIDES I. This paper reports further applications of the DIVA-

method to the design of airfoils and incremental wing improvements and the ver-

ification in experiment. First results of a new viscous design code also from

the residual correction type with semi-inverse boundary-layer coupling are com-

pared with DIVA which may enhance the accuracy of trailing-edge design for

highly loaded airfoils.
Finally the capabilities of an optimization routine coupled with the two vis-
cous full potential solvers are investigated in comparison to the inverse meth-

od. The designer with expertise in specifying pressures can usually sort
through certain design philosophies and off-design criteria more efficiently

than an optimizer up to now.

I. INTRODUCTION

The application of CFD methods for analysis and design has been progressively
increased in the past decade_,2, 3 but when it comes down to the global forces
lift, drag and moment for transonic wings, let alone more complex configura-
tions with pod interference, the general accuracy of wind tunnels remains un-
matched. As cruise performance is the main driver for a transport aircraft de-
sign and the current designs in service already represent a high standard the
designer has to meet very tight performance targets at a guarantee margin of
I-2% in drag.

This has to be achieved at limited budget and within a time frame of -2.5
years during the definition phase through extensive iterations and repeated
wind tunnel test loops. Increased quality requirements and complexity of the
models, however, reduced the number of possible wing steps to 4-6. Hence
greater emphasis was placed on inverse design concepts at DA based on a combi-
nation of a direct-inverse transonic design code with measured pressure distri-
butions on complete configurations in order to derive incremental design im-
provements and performance estimates of high accuracy. Previous design codes in
the 1970's have either worked with the hodograph equations _,5 , used direct op-

timization techniques 6 or tried the inverse approach for the full potential

equation 7-_o. Hodograph methods are extremely difficult to use and limited to
shock-free flows which in practice reveal adverse drag in off-design cases.
Inverse methods that solve the Dirichlet problem need special treatment of the

trailing-edge closure, which used to be a problem with earlier codes 9. A va-
riation of the nose shape _ or tangential speed distribution along the a priori

unknown arc length t_,_2 can force closed profiles but in several cases the

resulting pressure distribution is far off the desired one.

+
Head of Aerodynamic Design Department

* Research Engineer, Aerodynamic Design
L** Research Engineer, Theoretical Aerodynamics ]
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A direct-inverse approach turns out to be more flexible in practical design, a_
it merely needs a specified pressure distribution and a starting geometry. Due
to the modular structure of the computing concept - the residual between actual
and specified pressures is determined by the use of an analysis code and the
geometry corrected to minimize the residual the transonic analysis code is
exchangeable and flows with shocks and viscous interaction can be treated in
the design cycle.

At ICIDES I the DIVA-method was presented in its initial state _3 and applied to
several successful designs for airfoils and wings _ . Further approaches to the
viscous direct-inverse design were reported recently by Campbell _s and Carl-
son _6 where even separated flows can be treated.

Higher order analysis codes that solve the Euler equations are already in use
as to mention the ISES-Code by Drela 17 which is based on a coupling with an in-
tegral boundary layer formulation with a lag-dissipation closure. This code is
very accurate in the analysis mode, the design modi available so far do not
solve for an arbitrary pressure distribution. A starting geometry close to the
desired one is necessary as the speed distribution on the leading edge is pre-
scribed - a major disadvantage. Even Navier-Stokes-Codes are already offered as
an analysis code in residual-correction design mode.

Efficient full-potential solvers coupled with semi-inverse boundary layer inte-
gral methods simulating wake curvature and thickness effects have demonstrated
their accuracy with respect to pressure distribution and drag which is in the
tolerance of different 2D windtunnels _82_ Three-dimensional analysis with
full-potential or Euler solvers ha_ experienced significant progress and even
complex configurations with engine/jet-effects are being treated worldwide.
Viscous effects however are mostly omitted or inaccurately modelled so far.
Moreover the inverse formulation is an ill-posed problem.

For design purposes we therefore rely upon 2D-methods which can be used more
rapidly and allow the designer to focus on key design parameters and quickly
sort out different design philosophies. Some ingenuity is needed for the trans-
fer to three-dimensional design, but this can be done by using an analogy meth-
od based on pressure distributions of a datum wing quite accurately.

II. THE DIRECT-INVERSE ANALOGY-METHOD (DIVA)

The two-dimensional transonic direct-inverse design method was presented
in_3, l_ . The DIVA uses an improved stream function method based upon the work
of Oellers 2_ and Ormsbee and Chen 23 - to design an airfoil for a specified sub-
sonic pressure distribution. The airfoil surface is replaced by a vortex sheet
with linear variation of singularity strength between the surface node points
(fig. I), whereas the Ormsbee method used a constant strength.

The sum of a stream function for a parallel flow and the perturbation stream
function of the vortex sheet is a constant on the airfoil surface. This is ex-
pressed in the following integral equation:

L

*b + _-_ _b Y(s)Inrds = Z'U 'cos a - X'U "sin (I)

]
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_here _b the unknown constant on the bodyIs surface. In order to solve the I
is

quation for the vorticity strength y(s) and _b' the integral is approximated
by a quadrature. The airfoil is divided into N-I segments, where N is the odd
number of panel node points. The singularity strength varies linear in between
two node points. This yields a system of N simultaneous linear equations

N
1

z Ki;'Y-'j j +mb = Zi'U "cos e - X.'U "sin e (2)_-Tj= 1 = l

i = control point.

The Kutta condition is

Vl + _N = 0 (3)

The influence of the wake is simulated by continuing the vortex sheet with con-
stant y downstream. It starts aligned with the bisector and turns slightly
downstream into the direction of the oncoming flow.

A specified pressure distribution can be achieved by successive iteration of
the ordinates Z;, while the abscissae X; remain constant. The ordinates Z_ of
the mth iteration are determined by replacing the singularities of the (m-l)th

iteration by the prescribed values _p:

(m) l (m-l) N-I (m-l)

Zi - cos e (Xi sin e + _b + J=IZK..Ij _p) (4)

The iteration ends if either the condition

max {aZ i} = max {/zi(m) - zi(m-l)/}
i i

or

(m) (m-l)/} (5)max {aCpi} = max {/Cpi - Cpi
1 1

is met.

As a first step for transonic design, the subsonic pressure distribution for a
starting geometry is computed for M = 0 (M = Mach number). This wing section is
then analysed in the high-speed region with the BGKJ program2_ coupled with a
semi-inverse boundary layer method_a. The target pressure distribution at tran-
sonic speed is compared with the BGKJ result and the differences (fig. 2) are
scaled down to the subsonic regime according to a modified K_rm_n-Tsien rule.
A new inverse step follows after modifying the subsonic pressure distribution.
This iteration loop usually converges within 5-10 design cycles.

Sample design cases for inviscid and viscous design were reported w3 as well as
applications to three-dimensional design. The purpose of this paper is to show
successful applications and comparison with experiments for designs derived
with the code and to present an improved viscous design code.

L J
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II. APPLICATIONS OF DIVA-2D AND COMPARISON WITH EXPERIMENT

A typical task for a design engineer is to increase speed flexibility and for
this purpose we tried to transpose the known characteristics of a datum airfoil
designed for C1 = 0.565/M = 0.73 to M = 0.75 at constant lift and moment for a
given thickness. Fig. 3 shows the computed result of the datum airfoil as well
as the target which was slightly modified to keep local Mach numbers below 1.2.
The required thickness was 11.5%, whereas the datum airfoil had 11.93%.

The measured pressures at off-design demonstrate the successful design. At this
lift the new design shows nearly the same drag, whereas at lower lifts a sig-
nificant improvement is demonstrated which is 5 drag counts (I d.c. = 0.0001)
better than the pure thickness effect. As the shock-strength at higher lifts
turned out to be higher than expected, a geometry check was performed.

Whereas the maximum deviations in curvature are concentrated on the lower side
and the nose region, the slope change on the upper surface seemed to be small
(fig. 4). The computed iso-Mach contours however revealed a bucket in the sonic
line. This is due to the coalescence of the compression waves reflected by the
surface changing from convex to concave curvature. Such a coalescence results
in the earlier formation of shock waves which was confirmed by Schlieren-pic-
tures (fig. 5).

The new airfoil served as a fixed camber reference for a variable camber (VC)

airfoil a concept which was reported for example in 2S A scheme of a system
solution is given in fig. 6 using the existing high-lift system. The camber
variation is achieved by small fowler motions, where the wheels of the flap
carriage are guided by two individual tracks in such a way, that in VC-opera-
tion the flap body slides underneath the spoiler trailing edge. The control
track and the flap upper surface have to be shaped such, that camber variation
is performed with minor discontinuities in surface curvature.

As a consequence to this proposal - which allows only positive camber deflec-
tions the design point is shifted to lower lifts where the wing is optimized
with respect to minimum drag with relaxed off-design constraints. This will be
the setting at low altitudes, low weight (medium range mission) and towards the
end of cruise. At start of cruise, step climbs to higher altitudes or increased
weight the lift demand is satisfied by discrete camber/fowler settings re-
sulting in the envelope in fig. 6.

A first VC-airfoil was developed in reference to the fixed camber optimum air-
foil mentioned above. For the design of the VC-airfoil criteria for a "VC-
suited" pressure distribution were concluded which are illustrated in fig. 7.
At the design point (Cl : 0.45)
- the supersonic region should be confined to X/C : 0.4 and terminated with a

weak shock;
- the region close to Cp* should exhibit small gradients in order to guarantee

a stable shock position in off-design conditions;
- the subsonic recompression gradients should not be larger than dCp/dx=3;
-the trailing edge recompression gradient should be degressive (Stratford-

Type), which is benefical for the turbulence structure and hence reduces the
friction drag;

- the balance of front loading and rear loading at the lower surface should be
altered towards front loading to reduce the adverse effect of pitching mo-

L ment" ]
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FAccording to these criteria the airfoil DIVA.was designed by

A wind tunnel model with three VC-flap settings was tested. For each level of
efficiency M*L/D the VC-airfoil demonstrated a greater flexibility in the Cl-
M-plane and the maximum efficiency was increased by 12% (fig. 8). A calculation
of the pressure distribution according to the VC-control law for four settings
adjusted to the lift demand (fig. 9) incorporated the surface imperfections due
to the discrete variation. The effects in pressure and drag are negligible
which was confirmed by experiment.

In the framework of the national research program ZKP-TLFI natural laminar flow
(NLF) investigations were performed. In comparison to a conventional airfoil
the typical NLF design features are depicted in fig. I0. Laminar flow runs of
60% and 80% of the exposed wing area were assumed resulting in some 10% of air-
craft cruise drag reduction. The required continuous acceleration imposes the
problem of increased recompression gradients with potential separation and
shock-wave boundary layer interaction upon the designer. In off-design condi-
tions laminarity loss due to pronounced suction peaks and corresponding
Tollmien-Schlichting instability or cross-flow instability with changing gradi-
ents versus lift may occur. A tool to shift the laminar bucket with increasing
lift demand is available by the VC concept.

A first NLF-airfoil was designed with DIVA for a lift of 0.4 and M = 0.73 and
tested. Fig. II shows a comparison of measurement and computation. The transi-
tion free drag is ~40% of the turbulent level and even the turbulent level
turned out to be competitive to a conventional airfoil of same thickness.

Finally the survey of 2D-designs is concluded by an example for hybrid laminar
flow control {HLFC). An arbitrary starting geometry was chosen {NACA 0008) and
the result was established after 20 iterations (fig. 12, 13), a further proof
of the versatility of the DIVA method.

IV. SAMPLE DESIGN CASE FOR 3D-DERIVATIVE DESIGN

In view of the difficulties of producing a design method for airfoils it is not
surprising that no completely successful solutions for the three-dimensional
transonic case are available. A combination of wind tunnel results of a datum
aircraft with a direct-inverse design method seemed to be more promising though
not satisfying from the scientists' viewpoint. Subsonic pressure distributions
(up to M = 0.6) are used to design a zeroth iteration geometry by means of the
subsonic inverse code. These sections include the subsonic cross-flow and vis-
cous effects. If a transonic pressure distribution is then prescribed as target
distribution, the DIVA method can design an airfoil representing the measured
three-dimensional distribution when analysed with a two-dimensional direct
code. This airfoil deviates from the actual section profile: it is an analogous
numerically adapted profile.

Starting from this state, a redesigning of the wing is possible by improving
the target pressure distributions in selected spanwise stations. The result is
a new set of analogous profiles. The differences between the two sets of pro-
files have to be added to the datum wing sections and the new wing is defined.
This may sound artificial, but is a quite reliable way to incorporate interfer-
ence aspects in the design of a new wing. In_3 already two applications of this

LDIVA-3D were reported. ]
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A recent successful application was the validation of a trailing-edge modifi-_ation on the Airbus A340 (fig. 14). A 3.75% chord extension combined with a I

camber increase was designed at the outboard engine position. The effect of the
modification is a reduction of the lift break due to the engine and hence a
gain in induced drag as well as a pressure drag improvement (fig. 15). The
estimate in fig. 15 is in surprisingly good correlation with the subsequent
test result.

V. AN IMPROVED DIRECT-DESIGN CODE WITH A HIGH ACCURACY VISCOUS TRANSONIC
ANALYSIS CODE

The high accuracy of the viscous transonic analysis code SGW_9-2_ was coupled
with a new direct design method called REPAN, a name, which is an abbreviation
of reverse panel method. The basic principle is the formulation as a mini-
mization problem, which is adapted in the form

M
target 2 t

E = r, _i[Cpi (_) Cpi ] - Min (6)
i=l

Thus we look for a profile, which fits best to the target-Cp-distribution at M
discrete stations. The minimum of the merit function E is done with an algo-
rithm due to Levenberg and Marquardt 26 The geometry to be designed is given in
terms of a set of design parameters g, which specify the location and shape of
the profile. Starting from an initial geometry the minimization is done by
variing these parameters. To perform a minimization step, a matrix, relating
pressure changes and parameter changes, has to be computed. This matrix is just
the Jacobian of the transformation from parameters to pressures (= analysis
code!). It is computed numerically.

The set of parameters, which specify the actual geometry, splits into two
groups: global and local ones. The former include the chord angle and transla-
tion vector components between profiles for multi-element cases (fig. 16). They
specify the location of the profiles without altering the shape. The profile
shape is defined - separately for lower and upper side - by Bezier splines.

This technique uses a set of points r i = (x , ),i = ]...n ('Bezier-knots',
fig. 16) to define a curve with position vector 7'(t) -- (x(t), z(t ) by the pa-
rametric equation

n _B_(t) = z (t) (7
i=O ] Bn'i

with

n)ti (l_t)n-i
Bn,i(t) = (i , 0 <_ t < 1 (8

(n th
i ) is the i binomial coefficient of order n.

The curve defined in this way has the following properties:

(i) The curve passes through the first and last Bezier knot for parameter val-
ues t = 0 resp. t = I. This follows immediately from the definition, because we
have

L ]
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Bn,i{O) = {0 i O' Bn,i(1) = {Ol ii l= nn (9

and the above sum reduces to

B _B
= _o ; _(I) = r n

{ii) Taking the derivative at t = 0 it follows, that

• _B +B
r(o) = n(rl-r O)

which is equivalent to

B B
dz _(o) Zl-Zo

t=O i(o)

I0

II

12

The derivative of the curve at the beginning is therefore given by the tan-
gent of the first Bezier segment. An analogous result is valid at the endpoint
t = I.

These properties can be used to impose simple constraints on airfoil geometry.
For airfoil design, V(t) represents a lower or upper side and t = 011 corre-
sponds to the leading/trailing edge. The {x i } coordinates of the points of the
initial airfoil are used to establish a corresponding set of parameters {t,};
the Bezier ordinates excluding the first and last one - zB, i = 1.... n-I are
the local design variables mentioned above. These will be determined in such a
way, that the sum of squared pressure deviations is minimized.

As the airfoil is composed of two parts, some restrictions on Bezier knots have
to be imposed to insure continuity of values, first and second derivative at
the connection point i.e. the leading edge:
- The first Bezier knot is placed at the leading edge and held rigid.

- The second one has the same x-value as the first one: x_ = x 8. This serves
for a normal tangent at the leading edge (see fig. 16).

- The ordinate z_ of the second Bezier knot is related to the curvature at the
leading edge. This fact can be used in two ways: {I) relating the ordinates
of the first Bezier Knots on the lower and upper side serves for continuous
curvature with a value, determined by the design process, or (2) we can do a
design with specified Teading edge radius just by fixing the ordinates to
their appropriate values. The design in fig. 19 is done with continuous but
variable leading edge radius•

Similar conditions hold at the trailing edge. The last Bezier knot is placed at
the last point of the lower resp. upper side and held rigid thereby keeping the
trailing edge thickness constant. Additionally we could prescribe the tangent
of the last Bezier segment thus performing a design with specified trailing
edge angle.

The minimization of the sum of squared pressure deviations is done with an al-
gorithm after LEVENBERG and MARQUARDT. It is an elegant method that combines

the inverse Hessian method and the steepest descent method by introducing a I
factor ("Marauardt-factor"), which switches smoothly between these extremes.]
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Far from the minimum (large factor) steepest descent steps are performed]
whereas approaching the minimum this factor is reduced automatically thus"
switching to inverse Hessian steps.

This method works very well in practice and has become the standard of nonlin-
ear least squares routines. Details of the method may be found in 26 Fig. 17
shows a simplified flow chart of the REPAN-design procedure.

In the past authors used the least squares method for solving the profile de-
sign. Labrujere 27 prescribes tangential velocities and uses Legendre poly-
nomials for the shape description. He did not include global parameters.
Bristow2S used panel direction angles as design variables. He had to do addi-
tional Cp-control to achieve smooth profiles.

To formulate the inverse problem as a minimization problem has several advan-
tages:
(I) As the inverse step is purely algebraic, each analysis code can be run in

the reverse direction. The present method is optimized for coupling with
panel codes - concerning calculation time - but any given code, even large
scale ones as used in our test case two, can be used as well. But it should
be mentioned, that additional code dependent research is required, to ob-
tain solutions in reasonable time. Calculation time is the crucial point of
this approach.

(2) The geometry definition includes the possibility of geometrical con-
straints, such as fixed trailing edge thickness, normal tangent at the
leading edge, prescribed trailing edge angle. Curvature control during de-
sign process is possible by additional control of the turn-around angles at
the Bezier-knots (fig. 16). This option is needed in critical cases only.

(3) From a practical point of view, flexibility in cases of partly unphysically
specified target pressures, is the most important feature. Although we
know, that constraint conditions are to be fulfilled by the Cp-target val-
ues 29, there are two situations, in which unproperly specified Cp's are un-
avoidable: measured Cp-distributions (because of measurement errors) and
2D-Cp-cuts from 3D-configurations (because of missing stagnation point). In
such ill-posed cases we solve for the "nearest" profile in the least square
sense. Additionally, if we have a guess of some unphysical target pres-
sures, they can be "switched off" by setting the corresponding o equal to
zero. For small regions of the profile - where "small" means small with
respect to the distance of Bezier-knots we are allowed to do that, be-
cause the variation of a local parameter affects a reasonable part of the
profile (in fact, the whole side, because Bezier-splines are nonlocal) and
therefore the geometry is determined by the influence of nearby pressures,
which are assumed to be correct. This has been proven to be helpful in the
vicinity of the stagnation point and the trailing-edge region.

As a first validation example test case 2 from ref. _3 was chosen, which shows
the design potential of a typical supercritical airfoil with rear loading. By
means of a calculation with the BGKJ code including semi-inverse boundary-layer
coupling, the pressure distribution in fig. 18 was obtained. Considerations
concerning a reduction of rear loading led to the modified target distribution
also depicted in fig. 18.

In the case of DIVA a liquid surface is designed where the displacement thick-
ness has to be subtracted whereas the REPAN code solves directly for the solid

geometry by applying viscous iteration in the analysis. The geometry modifica- Iions delivered from both codes are given in fig. 19 as well as a comparison of J
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the last REPAN iteration with respect to the target pressures which is satis-_
factorily matched. The redesigned airfoils are quite similar at first sight but
the REPAN airfoil does not meet the required thickness (12.55% instead of
12.93%) and a significant deviation of the trailing-edge camber can be noticed.
This corresponds to not properly specified trailing-edge thickness. As men-
tioned above this quantity is held fixed during design process. Cp-control is
done everywhere except at three stations near stagnation point.

In order to compare the two different designs, the airfoils were calculated for
the same lift and Machnumber with the BGKJ code incl. boundary layer iteration.
While the agreement with the target distribution (fig. 20) for the DIVA airfoil
is still quite good the REPAN airfoil shows a larger deviation. This is due to
the local change at the trailing-edge and corresponding higher angle of attack
for a given lift. At the design point the DIVA airfoil shows 1.5 d.c. less drag
and a 43% reduction in pitching moment with respect to the datum airfoil. The
REPAN airfoil however exhibits 2.5 d.c. excess drag despite the reduced thick-
ness. If the thickness is scaled to the target value additional 2 d.c. have to
be added; i.e. that the improvement at lower lifts in fig. 20 is diminished.
Hence it can be concluded that at the present state further investigations de-
voted to the accuracy of the trailing-edge region seem to be necessary in order
to enhance the viscous design modus.

VI. Application of a Numerical Optimization Routine

The design methods described so far require an experienced designer with physi-
cal insight into the trade-offs of the pressure distribution he specifies. But
what is the ideal pressure distribution with respect to different objectives
under practical constraints? A further class of design methods using opti-
mization routines may give an answer to this.

Coupling of a gradient method with two transonic aerodynamic analysis codes
In an optimization process a so-called 'objective function' F(X) is to be mini-

mized (or maximized) subject to a set of (m) given constraints Gj(X) _ O,
j = l,m with X being the vector of the design variables.

Relating to the design of an airfoil the variables would have to define the
airfoil shape while the objective function would be a characteristic of this
airfoil, for example the drag coefficient Cd, at a given design point. To keep
the design inside certain boundaries and allow the optimization code to con-
verge faster some constraints on other airfoil characteristics such as lift,
pitching moment etc. or geometrical constraints like the thickness, camber,
trailing edge thickness should be imposed.

Though a lot of different optimization techniques can be applied to approach
this design problem it is evident that, among the existing nonlinear minimi-
zation routines, the Vanderplaats gradient method 6,3°,31,35 is the most widely
used 32,33,3L, 36

This optimization code called CONMIN (Constrained Function Minimization) is
part of COPES, a Control Program for Engineering Synthesis. In this code the
strategy, one-dimensional search direction and optimizer can be chosen by the
user and adapted to a certain problem.

ig. 21 shows the principle of the design process. The optimization direction
findinq process of COPES is illustrated for the two-variable case. First each]
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omponent of the design variable vector _ is varied starting from n ° (initial 1esign variables) and leading to a gradient vF(X°). This could be taken as the I

search direction S but because of convergence problems for nonlinear functions
the "method for conjugate directions" is being prefered. In this case S is cal-
culated from the gradient and the last search direction by

_q = _vFq + jTFqj2 / ivFq-ll2 _q-I (13)

If the design comes in contact with a constrained region the search direction
is found taking the gradient vGj of the active constraint and vF of the
objective function. In addition a "push off factor" is used to direct the
search vector in the region where the feasible sector (allowed designs) and the
usable sector (designs with improved objective function) overlap. This region
is called the usable feasible sector. Since every iteration step needs n+3
analysis, i.e. about lOn+30 calculations for one design, which has to be done
by a precise, time consuming (therefore expensive) aerodynamic analysis code,
COPES offers another design mode to approach these problems. Here the objective
function and the constraints are developed as second order Taylor series expan-
sions :

with
F(X) = F ° + _xTvF + I/2_xT[H] _X AX = X-X °

F = F(X) at T °

Gj(X) = GO + _xT_Gj + 1/24xT[H]j_X [HI = Hessian Matrix (14)
J vF = vector of first

partial derivatives

Using this mode of the code assures accelerated convergence because data cal-
culated in one iteration step are still known in another step, which is not
the case for the standard design mode. Also only one exact analysis is needed
for every iteration, whereas the first Taylor series expansion requires
l+n+n'(n+l)/2 additional analysis in this approximation mode. So the method
should be used for less than twenty design variables to be more efficient than
the standard finite difference mode. Through the Taylor series the user is also
able to prescribe a solution and accelerate the convergence of the code even
more if he has some good designs to start from. In fig. 21 the approximation
mode is depicted.

An airfoil shape can be described by the design variables either in the form of
an analytical function or a function of aerodynamic origin, i.e. an airfoil
library (fig. 21) or so-called aerofunctions. The analytical functions describe
an airfoil by polynomials of higher order, which leads to a large number of de-
sign variables or problems of fitting the polynomials together if the airfoil
is divided into different sections. Also some unrealistic shapes may occur be-
cause the solutions are purely mathematical.

In order to start the process the analytical functions are fitted on an initial
shape and coefficients are obtained. These coefficients together with the Mach-
number, the angle of attack (or the lift coefficient) and the given set of con-
straints are needed by the program to optimize the objective function. The co-
efficients are the design variables being perturbed by the optimizer to reach
an optimal design. A new shape is prescribed by the linear combination

+ +...+xoL
with (Xj, j = O,n) design variables (shape coefficients)

L (Fj, j l,n) vector with analytical shape functions J
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ith respect to the orders of the analytical function n, a compromise has to beound between a large number of variables and a good approximation of an air- I

foil shape. The last also depends on the type of function that will be used,
since some functions tend to reveal oscillations even at higher polynomial or-
ders Generally the order should not exceed twenty on the whole airfoil because
the analysis especially with a viscous code will be too expensive.

Similar to the preceding definition functions of aerodynamic origin are applied
by superposition of different airfoil shapes from an airfoil library with a
linear combination (see fig. 23). In this case the Y-coordinates (shape func-
tions) are defined numerically and not by analytical functions. By adding spe-
cial airfoils to the library that fulfil some desired constraints it is possi-
ble to impose these constraints on the optimized shape without giving this in-
formation to the optimization code. Therefore these constraints do not have to
be evaluated and checked for their influence on the objective function during
every design loop, which means saving time.

Another type of functions with aerodynamic origin are quoted as "aerofunctions"
in some references 32,36 Here pressure distribution shape functions are super-
imposed on an initial pressure distribution and the perturbations are related
to different airfoil shapes. This also promises to provide some realistic
shapes as optimum solutions. In the present design task an airfoil library is
used to define the shape but later the program should be expanded with regard
to analytical functions.

The viscous BGKJ-code _,2_ and the SGW-code _g°2_ are both coupled with COPES.
Especially the latter provides a high accuracy analysis tool to calculate coef-
ficients describing the characteristics of an airfoil at the design point_ This
is needed to make the direct design competitive against the inverse design
methods.

Test cases
To validate the successful coupling a testcase from Vanderplaats3_, 35 is being
calculated with the BGKJ-code as analyser. With a given set of four NACA air-
foils and two basic shapes to impose geometric conditions an airfoil with maxi-
mum lift for Moo= 0.I and a = 6 ° should be found that satisfies the constraints
mentioned in fig. 22.

In this figure the initial airfoil, the reference airfoil and the optimized
airfoil after 42 iterations without and 17 iterations with Taylor series expan-
sion are compared. Despite the different analyser the result differs only
slightly from the reference, whereas the result without Taylor series expansion
is still not converged.

For the second test case a library of six transonic airfoils is given to re-
design the VA2 airfoil at M = .73, C1 = .552 for minimum drag. Since the
design was already performed®by the DIVA-code with the BGKJ-code as analyser
the role of constraints and the influence of the library on the design should
be investigated.

Fig. 23 illustrates the set of airfoils and constraints for which the converged
solution after 30 iterations does not give a realistic shape comparable with
the one designed by DIVA. This is also the case if the constraints are relaxed
or a pressure gradient is prescribed. 0nly if the Cm-constraint is omitted the
optimizer converges after 25 iterations showing an airfoil that resembles more

he VA2 type, especially concerning the rear loading. The pressure distribution]
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emphasizes this circumstance. A solution close to the DIVA optimized airfoil-_
however can be found if this airfoil is included in the library. Therefore it

I

can be concluded that for the given task the airfoil library is not sufficient
to design an airfoil as good as the DIVA airfoil, for which off design aspects
are also considered.

For the third test case COPES is coupled with the SGW-code to redesign the VA7
airfoil. This basic VC-airfoil should be optimized with respect to minimum drag
at the design point M = 0.74, Cl = 0.45 and constant thickness. The optimi-
zation result after 19 iterations is depicted in fig. 24. Though the changes
are only moderate a drag reduction of one count is reached. Again the library
of four airfoils (see fig. 24) does not allow a better result starting from the
VC-airfoil with only small changes in the shape for every design iteration.

Nevertheless this combination of COPES and SGW as analyser promises to work
more efficient if analytical functions are used to describe the airfoil.

VII. Conclusion

Applications of the direct-inverse analogy-method (DIVA) for the design of su-
percritical airfoils and wing modifications have been presented and verified by
experiment.

The method yields results with high accuracy even for flows with strong shocks.
It is as simple as possible from the user's point of view and merely needs a
pressure distribution as input. The influence of the starting geometry (i.e.
nose shape) is negligible.

An application to three-dimensional design is possible, provided an initial
wing shape and pressure measurements are available. Incremental improvements of
wing performance may be assessed with an accuracy less than 1 per cent.

Due to the modular structure of the computing concept, the transonic code is
exchangeable, and improved codes can be implemented. So the DIVA method is a
comprehensive tool for practical wing design. Future applications by using 3D-
Euler results including viscous corrections instead of measurements are planned
in order to obtain further refinements of the design before testing it.

A new residual correction design code with complete semi-inverse boundary layer
iteration in the design cycle was presented which may enhance the accuracy of
trailing-edge design for highly loaded airfoils. Further work in this field is
envisaged.

Finally applications of a numerical optimization routine coupled with two vis-
cous full potential solvers were discussed. A significant dependence of the re-
sults upon the airfoil library to be composed was found. A more general geome-
try description seems of paramount interest. However the designer with exper-
tise in specifying pressures may win hands down in this competition.

L ]
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ABSTRACT

An iterative method for blade design based on an Euler solver and described m an earlier

paper is used to design compressor and turbine blades providing shock free transonic flows.

The method shows a rapid convergence, and indicates how much the flow is sensitive to small

modifications of the blade geometry, that the classical iterative use of analysis methods might
not be able to define.

The relationship between the required Mach number distribution and the resulting geometry

is discussed. Examples show how geometrical constraints imposed upon the blade shape can

be respected by using free geometrical parameters or by relaxing the required Mach number
distribution.

The same code is used both for the design of the required geometry and for the off-design

calculations. Examples illustrate the difficulty of designing blade shapes with optimal perfor-

mance also outside of the design point.

SYMBOLS

L

a speed of sound

M isentropic Mach number
normal vector

p0 total pressure

p static pressure
t time

T O total temperature

velocity vector

flow angle (with resp. axial)

a cascade solidity

subscripts

n normal component

t tangential component
1 cascade inlet

2 cascade outlet
.d
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INTRODUCTION

The design of new compressor and turbine blades is in most cases still done by successive

direct analysis of the flow field around a given blade shape and modifications of the blade

geometry, according to some empirical criteria and/or the designer's own experience. This

approach makes it easier to respect geometrical and mechanical constraints imposed to the

designer, such as thickness distribution, inertia momentum, stagger angle, pitch-to-chord ratio,
etc.

New aerodynamic design tools have been developed, that have shown the ability to provide

conclusive improvements of the aerodynamic performance when compared to existing blades.

These improvements result from a specified controlled diffusion along the blade surface or

a shock-free transonic flow. It is unlikely that they can be obtained by a traditional design

procedure, namely by a series of flow analysis and empirical blade modifications. The design of

transonic shock-free blades by means of an inverse method is one of the main topics discussed

in this paper.

Analytical design methods developed in the past, using conformal mapping (Lighthill, 1945,

Woods, 1955), permitted to build a complete theory of the inverse design of airfoils and blades,

and provided the conditions required for the existence of a solution. However, they have a

hmited application due to the restrictive assumptions needed to allow an analytical formulation

of the problem. As tile blade shape results from the calculation, it is also more difficult to

satisfy the mechanical constraints that one may wish to impose on the blade shape.

Numerical inverse methods have been developed for potential flows, using singularities for

incompressible cases (Murugesan and Railly, 1969, Ubaldi, 1984, Van den Braembussche et

al., 1989) and the odograph plane (Bauer et al., 1972, Sanz, 1984) or the potential-stream

function plane (Stanitz, 1953, Schmidt, 1980) for the compressible cases. The last methods

are not very accurate in the stagnation point region and are unable to predict shocks. It is

therefore questionable whether blades designed in this way for shock-free transonic flows are

shock-free in reality.

Non potential flow fields require solving the Euler equations. Such methods are capable of

treating shocks correctly and are therefore suited to verify shock-free designs. They are mostly

used in iterative procedures and require a first guess of the blade shape. This initial geometry

is modified from the results of a flow analysis until the imposed pressure or velocity distribution

is reached. The blade modifications can be calculated in a pure mathematical way, in order to

minimize an error function, eg. depending on the difference between the calculated pressure

distribution and the target (Vanderplaats, 1979, Hicks, 1981). Although these methods have

the capability to respect geometrical constraints, they are still very expensive in terms of CPU

time, because many iterations and flow analyses are required.

The blade modification can be determined in a more physical way, resulting in decrease in

CPU time. The present method imposes the required Math number distribution as a boundary

condition on the blade wall and uses the concept of a permeable wall to define the modification

of the geometry. This approach allows a reduction of the number of blade modifications, and

consequently of the number of mesh generations. The method has proven to be very efficient

in subsonic and transonic applications (L6onard, 1990, L6onard and Van den Braembussche,

1991). As shown in this paper, the iterative procedure makes it easier to meet geometrical and

mechanical constraints imposed in industrial applications, and to find out whether a realistic 2
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,'-blade shape corresponds to the required Mach number distribution. Another advantage of the-]

present method is the possibility of using the same code for the blade design procedure as well

as for the off-design analysis.

THE EULER SOLVER

The system of Euler equations for unsteady flows is solved using a time marching procedure

and a finite volume approach. The numerical domain is discretized using C grids, for a good

description of the leading edge geometry (fig.l). The unknowns are located at the vertices of

the mesh cells, in such a way to avoid extrapolation towards the blade wall. The code can

handle open trailing edges, in order to allow additional degrees of freedom in the geometrical

definition of the blades. This makes the problem of solution existence easier to solve and

allows a sufficient blade thickness to contain the boundary layer.

The equations are integrated in time using a Runge-Kutta first order accurate scheme,

with local time-stepping, enthalpy damping and imphcit residual averaging to accelerate the

convergence. A detailed description of the solver may be found in L_onard (1990).

CALCULATION OF THE UNKNOWNS ON THE BLADE WALL

The method developed by the authors is an "iterative inverse method", in which the final

geometry is the result of the flow calculation, imposing the required Mach number distribution
on the blade wall. It has to be iterative since the location of this boundary is part of the

solution, approximated at the beginning of the design procedure by any convenient initial

geometry. There is no reason that the flow remains tangent to this geometry during the

calculation, except in two cases, when the blade "is" the solution of the problem or when the

blade wall is modified in order to respect the slip condition, as the time marching procedure

iterates to the steady state.

Methods based on the second case have been proposed by Meauz6 (1982), Giles and Drela

(1987), and Zannetti et al. (1984). This approach has not been considered here since a

minimum of successive blade modifications and corresponding mesh generations is desired.

The blade wall must therefore be treated as permeable to the flow field. After convergence of

the time marching procedure, the flow calculation results in a distribution of a normal velocity

component on the blade wall that is used to modify the geometry.

The calculation of the unknowns at a boundary is dominated by the mathematical nature

and the physical properties of the system of equations. As the Euler unsteady equations

are hyperbolic, the solution can be constructed, at any location in the calculation domain

(including the boundaries) using the information propagating in directions perpendicular to

characteristic surfaces. The eigenvalues_of the_Jacobian matrices_ of the Euler system, projected
in a considered direction rY, are VN, VN, V_ + a and V_- a, and define the propagation

speeds in that direction. If the vector ff is chosen perpendicular and entering the blade wall, a

positive speed means that the information is propagated on the wave front, in the rY direction,
from the inside of the calculation domain to the outside, and is therefore available to calculate

the value of the unknowns at this point of the blade wall. On the other hand, a negative speed

means that the information comes from the outside of the numerical domain and propagates

towards the inside. This entering information has to be provided by a boundary condition at

the boundary point.
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If the slip condition is imposed on the blade wall (V_ = 0) only the speed V_-a is negative

and therefore only one boundary condition must be imposed, i.e. the velocity direction at that
point. This shows that the slip condition can not be imposed together with the Mach number
value, at least for a fixed blade wall.

On the other hand, if the static pressure p (or the Mach number) is imposed on the blade.
a velocity component normal to the blade can appear and, depending on its sign, 1 or 3

eigenvalues will be negative and 0 or 2 additional conditions must be imposed. The sign of
this normal velocity component can be determined as a function of the imposed static pressure,

using the compatibility relation corresponding to the only eigenvalue which is always positive

÷ a).

If the normal velocity is positive, one boundary condition (the required static pressure)
must be imposed, since only one eigenvalue (I._ - a) is negative. The additional informa-

tion necessary to calculate all the unknowns at the boundary can be provided by the two

compatibility relations corresponding to _, and k_, since they are positive.

If the normal velocity is negative, two additional boundary conditions must be imposed.

The best results have been obtained by imposing the total pressure and total temperature at

that point. Imposing the latter does not give any special problem, since in a blade-to-blade

calculation it is supposed to remain equal to the total temperature at the inlet. Imposing

the total pressure is not so straightforward because of numerical dissipation. This problem is

solved by imposing the value of the total pressure from the previous time level in such a way

that the total pressure can adapt to the new flow field. This is important when a shock-free

design is performed starting from a blade for which a shock was present in the original flow

field, since in this case the initial and final total pressure distributions on the blade wall can

be very different from each other. A detailed derivation of the compatibility relations can be

found in L_onard (1990).

MODIFICATION OF THE GEOMETRY

A new geometry must be found since the initial shape no longer corresponds to a streamline.

The modification algorithm is based on a transpiration model and calculates the position of

the new streamlines using the velocity component normal to the initial blade (L6onard, 1990).

The modification starts at the stagnation point, and is performed separately for the pressure

side and the suction side. The new suction and pressure sides are defined as streamlines of the

flow satisfying the Euler equations, and therefore can not cross each other. This guarantees a

blade with positive thickness if the numerical integration procedure and the normal velocity

calculation are sufficiently accurate.

RESULTS

The first example illustrates the accuracy of the method for shock-free transonic flows by

applying it to the supercritical compressor blade designed by Sanz (1984) with an odograph

method, and proposed as a test case for inviscid calculation methods in AGARD-AR-275 (fig.

2a). Analysis of the flow with the present method shows discrepancies on the suction side

Mach number distribution (fig. 2b) similar to the ones observed by Denton (1983).

L The geometry calculated by Sanz has been redesigned using the present method in order
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to obtain the shock-free Mach number distribution imposed by Sanz as the input data of his

design (fig. 2c). Only one modification of the geometry has been necessary to obtain good

agreement (fig. 2d). The difference between the initial geometry designed by Sanz and the

one designed with the present method is very small. This example suggests that the original

geometry defined by Sanz may not be shock-free, and illustrates how supersonic flows are very

sensitive to geometry changes.

A second example illustrates the design of a shock-free compressor blade, using a NACA-65

(12Aulsb)10 as an initial geometry. This blade is not suited to transonic flows, and a strong

shock is present in tile flow field. Therefore large geometry modifications are expected. The

flow conditions are: 1111 _- 0.8, p0 =1.33 bar, T ° = 341.5 K, _31 = 45 deg, M2 = 0.5. The

cascade geometry is defined by a stagger angle of 31 deg and a solidity of 1.

In a first design, only the suction side Mach number distribution has been modified. The

initial distribution is compared to the shock-free required distribution in figure 3a. Good

agreement between the calculated and the imposed Mach number distributions is obtained

after 4 blade modifications (fig. 3b). The final blade is compared to the NACA-65 blade in

figure 3c. One observes a thick leading edge, due to the velocity peak in the pressure side

leading edge region. This is not desirable because it leads to strong diffusion and subsequent

flow separation along tile pressure side, as predicted by a boundary layer calculation.

A second design has been performed, starting also from the NACA-65 blade, but by modi-

fying both the pressure and suction side Mach number distributions (fig. 4a). Decreasing the

pressure side velocity in the leading edge region results in a lower average velocity, and in a

smaller leading edge thickness because continuity requires a smaller blade blockage. Conver-

gence to the required distribution is obtained after 3 modifications of the geometry (fig. 4b).

The initial and final geometries are compared in figure 4c. One call observe a thinner leading

edge and a shift of the maximum thickness location towards the middle of the blade.

Blade shapes designed by inviscid methods include the boundary layer blockage on the

pressure and suction sides. The physical blade geometry can be obtained by subtracting the

boundary layer displacement thickness from the so-called "inviscid" geometry. The minimum
thickness of the "inviscid" blade, required to contain the boundary layer, can be calculated as

a function of the target velocity distribution before the design procedure is started.

The analysis of the boundary layer for the prescribed Mach number distribution shown on

figure 4b indicates that the boundary layer thickness at the trailing edge is of the order of 5%

of the chord length, which is larger than the total trailing edge thickness of the blade shown

on figure 4c and makes this blade unphysical. Increasing the trailing edge thickness is possible

by increasing both the suction and pressure side Mach number distributions in the trailing

edge region by the same amount (fig. 5a). The circulation is unchanged, resulting in the same

turning of the flow, but the bade thickness must increase to satisfy continuity. The redesigned

geometry is compared to the previous design in figure 5b and shows a larger trailing edge

thickness capable of enclosing the boundary layer and the mechanical thickness.

An off-design analysis of the second blade has been performed with the same solver, chang-

ing the incidence by =t=2 degrees (fig. 6a and 6b). One can observe that the shock reappears.

Although the flow field is no longer shock-free, the off-design behaviour of the new blade is

better than that of the initial geometry.

L I
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F The third example illustrates the redesign of a transonic turbine blade. The starting geom-

etry is take,, from the workshop VKI-LS 82-05 (Arts, 1982). The flow conditions are: p0 = 1

bar, T ° = 278 K, B1 = 0 deg, M2 = 1.1. The cascade geometry is defined by a stagger angle
of-60 deg and a solidity of 1.25.

The imposed shock-free Mach number distribution assures a monotonically increasing ve-

locity on the suction side (fig. 7a). Two modifications of the blade geometry are sufficient to

give good agreement between the calculated and the required Mach number distributions (fig.

7b). The original and final geometries are compared in figure (7c). Off-design distributions
are shown in figures 7d for an exit Mach number of 1.05 and 1.15 instead of 1.1.

The number of grid ,lodes used in the above examples ranges from 161 x 15 to 199x 15. The

typical amount of CPU time for one blade modification is 15 minutes oil an ALLIANT FX/8
computer with 5 processors.

CONCLUSIONS

The present method has been successfully used to design shock-free transonic blades. It

provides in few iterations results that could not be achieved using traditional direct methods
and empirical blade modifications.

The method combines the advantages of a pure inverse method, since the Mach number

distribution can be imposed on the blade wall, and the advantages of a direct method, allowing
good control of the geometrical parameters.

It has been shown how modifications of the required Mach number distribution influence

the blade geometry. Special attention was given to design trailing edges of sufficient thickness

to enclose the boundary layer blockage.

Off design analysis of designed geometries illustrate the difficulty of optimizing for more
than one operating point.
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VARIATIONAL FORMULATION OF ItYBRID PROBLEMS

FOR t:['I.LY 3-I) TRANSONIC FI.OW WITH SttOCKS IN ROTOk

Gao-Lian Liu, Professor & Director

Laboratory of Turbomachinery Aerodynamics

Shanghai Institute of Mechamcal Engineering
516 Jun-Gong I_d, Shanghai 200093, China . /J

ABS;TRACT:

Based on Rers 13,41, the unified variable-domain variational theory of hybrid
problems for rotor-flow 11,21 is extended to fully 3-1) transonic rotor-flow with

shocks, unifying and generahzmg the direct and inverse problems. Three
variational principle (VP) famihes have been estabhshed. All unknown boundaries

and flow discontinuities (such as shocks, free trailing vortex sheets) are

successfully handled via functional variations with variable domain, converting

almost all boundary and Interface conditions, including the Rank|ne-llugomot shock
relations, into natural ones. This theory provides a series of novel ways for blade
design or modification and a rigorous theoretmal barns for fimte element

applications and also constitutes an important part of the optimal design theory of

rotor-bladings 161. Numerical solutions to subsomc flow by finite elements with
self-adapting nodes given in Refs[16,19,221 show good agreement with experimental
results.

NOMENCLATURE:

A

Al

A_

A2d

A:_

A,,

A_

dA .....

AS

a

(',W

/_,m

M

ti-

p

total area of boundary surfaces.

inlet & outlet surfaces (Fig.l).

periodic boundary surfaces (Fig.l): A==A_,UA_.a , A2,,: A._UA", ,
A_a:A).UAya.

free trailing vortex sheets.

all solid boundary walls: Aa=A,UAb=_A;UA_ ".

hub- & casing annular walls: A_=A_UA_ °.

blade surfaces: Ab-A_UA_'.

components of elementary area dA" in r-, _o-, z- direct,ons respectively,

d A'=d A-n _.

shock surfaces.

sound speed.

absolute, relative flow velocity respectively.

specific heat ratio Cp/Cv and re-(K-l) q
relative Mach number.

outward normal unit vector.

dimensionless pressure

mass flux pA.
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F r, ,z and ,7,,7,i7,
cylindrm coordinates fixed on rotor and the corresponding umt vectors.

_,S rothalpy & entropy.

s',6S-' boundary position vector & its variation.

dv elementary volume dv=rd_odrdz.

¢ potential function

angular speed of tile rotor.

A_,A',A_ demensionless forms of C,W,U' respectively.

p dimensionless density.

Subscripts:

a,b

d,u

m

n,T

pr

r,{o,z

P

S

.--I- _-

annular and blade walls respectively.

downstream and upstrcam respectively.

circumferenhally averaged value.

normal & tangential components.
prescribed.

radial, azimuthal and axial components respectively.
pressure blade surface.
suction blade surface.

parameters on (A_o , A)_) and (A_'o , A_)'a) respectively.

parameters just before & behind the interface or shock respectively.

Superscripts:

0 restricted variation 110].

known and unknown portions of the boundary respectively.

1. INTRODUCTION

Nowadays the design of advanced turbomachinery would be impossible without
using advanced aerodynamic theory and thereupeon based computational methods.

During the last decade much progress has been made in this field and a detailed

state-of-the-art review is given in Ref.[5], which reveals that with few exceptions,

e.g. Refs [1,2,11-17], most of work done to date, however, are concerned with the
direct (analysis) problem, quasi-3-D flow model and mainly finite difference, finite

volume and streamline curvature methods. Owing to the lack of exact (classical)
variational principles (VPs) for rotor-flow finite element methods (FEM) used so

far are exclusively based either on Galerkin approach or on approximate VPs for

the linearized problem. It is the great progress and the widespread and fruitful
applications of the FEM in solid mechanics that motivated the present author in

the mid 1970's to start a systematic search for VPs in fluid mechanics in general

[17,1B] and in 3-D turbomachine flow theory in particular [1-4,8,11,12J with special

emphasis on inverse and hybrid problems in order to provide both a new rigorous,
sound theoretical foundation for FEM in computational aerodynamics of turbo-

machinery and a number of novel rational versatile ways for new blade design or
old blade modification. The hybrid problem is the one which, being a unification as

well as generalization of the traditional direct and inverse problems, is capable of
combining the merits of the two, while eliminating their shortcomings [1,2,11]. As a

result, a lot of VP families have been established first for the direct problem [8]

L and the hybrid problem [11-13,16] of quasi-3-D cascade flow. In extending them to J
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ruly 3-D flow the major difficulties encountered were how to capture all posmble

unknown flow discontinuities, such as shock waves, free trailing vortex sheets and
tile unknown portions of the blade- and/or annular walls in inverse and hybrid

problems. Subsequentl2¢, a series of VPs in terms of potential or stream functmns
for the direct problem of fully 3-D transonic potential and rotational flows with

shocks :n rotors have been devcloped in Refs [3,4], and furthermore, a unified

variational thec)ry of various hybrid problems for fully 3-D incomprcsmblc rotor
flo_ has becn presented in t_ef.ll] and extended to compressible flow tn Ref.12],

thereby a very powerful mathematical apparatus "the functional variation with
variable domain" being used to full advantage for handling abovementioned flow

discontinuities. Successful numerical validations of such a theory have been

carried out In Rcfs[16,19,22} by using a new finite element with self-adapting nodes.
in the present paper, based on Refs 13,4], the unified variable-domain

variational theory of hybrid probicms for rotor-flow of I_efs [1,2,161 is extended to

fully 3-D transonic flow with shock waves m rotors of axml, radial- and mtxed-
flow types.

2. BASIC AEROTtlEP, MODYNAMIC EQUATIONS

Consider the fully 3=D subsonic and transomc potential, steady relative flow of

an inviscld fluid past a rotating blading with constant angular speed w° (Fig.l).

For such poter.tial flows the nondimensional governing aerodynamic equations
have the following form [3,4,7]:

Continuity equation:

1/_-(prA_). D(pA_). 8(prAy) / nV-(hA') (1)
rl- _r--*--g_ +-- --_-z-l_"

lrrotat:onality of the absolute flow:

First law of thermodynamics:

Homentropic equation:

p=p* (4)

Eliminating p in Eq.(3) via Eq.(4) yields:

Using Eqs. (2) & (3'), a full potential equation can be obtained from Eq.(1)

[2,3,4,71:

(1 2 870 I--M_ 824,4.(1__2182_@..... 2M.M_ 87_
--M')_r--5_ r 2 _<p2 8z 2 r grS_

where

2M,M)_ _):4' 9_ _A 02@ • l+(M_+Mu)2.84)= 0 (5)

__[(_r ) +(_ _0 _.,DO,:
.g_--A.) +_5-_z'--A.}, (Y') jp*/'=l 1 D4) 2
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F
M -W /a -_}4_ i::..,

or

M.=W./a=C [ ._' --/1,.)/pl '_'',
' "r 3_p

, /9

CZ

M,,=wr / a: A,, / Oz' _"_.

In the present paper, just as in b_efs [1,2J, the f oltowmg three types of 3-D

hybrid problems (IIAT".IIA), (tlu>.tiA) & (I-IL:):;tIA) are studied in detail, where, as

defined in Rers [1,2], e.g. ([qc;<HA) denotes such a hybrid problem in which a hybrid
problem of type (' (tic) ts posed on the blade surface, whale a hybrid problem of

type A (HA) is posed on the annular waUs (Fig.2a). In other words, the first symbol
characterizes the problem type on tile blade surface, while the second symbol .....

that on the annular wall. As for the hybrid problems ]l,_, ll_,. .... they are defined

in Table I for 2-I) casaades [11,12,16], for the annular walls they are defined
similarly [1,2].

"lablc I. Problem Classification (for the Blade Surface)

¢- -- - T- .......................

-1y pest (;i ven condi tions

Geometric I Aerodynamic

HA 'Part of airfoil form

fie_ [ Airfoil thickness

t ................................... 1I Pressure distribution along remaining part

Blade loading distribution (pp p=)

Pressure distribution along suction surface

llt, Jl distribution Velocity difference, distribution (d_-- A_.)

I) _All cascade geometry none

I 1 none Pressure distribution along airfoil contour

Of course, the abovementioned three 3-D hybrid-problem types are only some
typical ones taken as examples for consideration herein. Generally speaking, 3-D

hybrid problems encompass a much wider variaty of types. They provides the

designer with a series of novel design tools, which enable tlim to choose the most
suited problem types or their combinations for meeting various practical design
conditions at hand (e.g. aerodynamics, cooling, strength-vibrational and

technological requiements etc). As pointed out in Ref.[1], the three hybrid problems
studied tmrein per se embrace also very comprehensive special cases, which, to a

large extent, are capable of fulfilling various practical requirements of blade design
and which can be made even much broader by posing different problem types on
different portions of the blade (or annular) wall (F'ig.2b).

:3. VP FAMILY FOR THE (HA/.HA)-PROBLEM

In the development to follow, starting from the Vl's for the direct problem
I given in Refs 13,4] and employing the functional variation with variable domain |

/

L_ =J
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/ [1,41, we present a unified variational theory of hybrid problems for fully .R-l) l

subsonic, and transonic flows with shocks.

Proceeding similarly to Ref.[l] lead.-; to the following results without going into
details.

_: The solution to the (l|Ai'i/lA)-problem of 3-13 sub- and transonic rotor-flow

makes the functional dz stationary: 6J; O, where _, A_', A:u, A_ should be varied

independently.

J_(q,A: ,A:._,A,): I,+L+L A'_, (6)

where

IAI! IA'LljJ

,^:') _A_')

With all unknown boundaries or interface A_', A= and A_,_ treated by the method

of functlonnal vamations with variable domain [1,4] the Following set of

stahonarity conditions for J. can be derived from 6Jr,0:

Euler's eq.: Eq.(5)

Natural boundary conditions (B.C.):

on Al: pA,.-Cq,,)p,,

or, Azo: (pA,,.)'=(pA,,)" , 4'"-4'' J4",,

leading to the circumferential periodicity of all flow parameters.

on Aza: (_,A,,)'-(pA,,)"-O, p'-p" ,

They are just the interface conditions on the free traihng vortex
sheets.

on A_: Using 4" =4"+ as an essential (enforced) interface condition, we have

(a¢'/3T)_=(3_/3T)+, that is, the tangenhal velocity components at

both sides of the shock are equal:

(A_) =(A_)j, (7a)

So we obtain the following natural interface conditions:

(p A,,)__(p A,,) + (7b)

(p/_+#A_)_ =(p/_+#A_)+ (7c)

In addition, from Eq.(3) we can write

_-=_+ (7d)

Obviously, Eq-s (7a)-(7d) are none other than the well-known

Rankine-Hugoniot shock relations [3,4].

on A_3: pA.= 0 .

on A.": pA,, = 0, and p,.=(p,,,)o, .

on A_,': pA,,= O, and P-=ppr -

/ Thus, it has been shown that from this VP I actuatly the full potent,al /

L J
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F equation (5) together with aimost all boundary conditions for the 3-I) (HA>.llA)-

problem can be derived naturally, and all unknown surface (e.g. sho=ks, free

trailini_ vortex sheets and unknown walis) can be determined using e.g. f t!M.
Applying a cvm;traint-rem{ vmg transformation 1t7], the above _P I can be

extended to the following generali,:ed Vt'(GVP).

(;VP If: The solution to the above 3-1) (HA' tlA)-problem makes the following

l unctmn_l J/_ stationary: 6J/..=(), with Independent variations of 4,, A_, p, D, A", A.

and A2o.

.i,.(qb,A,p,p /_., _,A.;,}=I + + A^ (B)

where

rrf

-I;/: fiiA_ _:_ ._(A' ..I_+,AjI_);+_[I ln(p _, )i- m,91dv

,Mr

In a way mmilar to the above one It can be shown that from 6J,_ () thc
following _et of natural conditions results:

Eular's equatmns: Eqs (1)-(4).
Natural B.C.: All the same as those of VP I.

_ l.i._d_YP__ (S(; VPs):

Via a constraint-recovering transformation ]_"], from GVP 11 a family of
subgenerulized VPs can be derived, one of which is the foregoing Vt" I.

4. \'|, t..,_MILy_ J:O_]_"rm:i_(H, :.:rl,o-t'J?Ot_Ll_M

In this case tile B.C. on the annular walls remain the same as those _,f the

(Ha ,.itlA)-problem, _hile tile t;.(', on the blade surface become:

(i) Blade thit.kne._;s distribution given by

Vv; _,,, g÷ (r,:.:); (9A)

(ii) blade-loading distribution given by

p;,-- p-
K g,(r,z) ':gP, J

where g_(r,z) and gr,(r,z) are prescribed functions.
Proceeding in just the same way as in the foregoing section, we can establish

the following VP Family for the (l-ta)KftA)-problem, which differs from that for the
(tlAS(t4A)-problem only in that the boundary integral term L ^A now should be

replaced by the following L_A:

imposing Eq.(gA) as an essential B.C.. In Eq.(10) the symbol (A_)_ stands for the

suction blade surIace. In this way we obtain the following VP family.
VP 111: The solution to the (H_)(HA)-problem of 3-I) sub- and transonic rotor-flows

makes tile functions J_H stationary: 6d,t.=0, thereby _b A] °, A_, A_ and ATo should
be varied independently.

J;rfl_b,A_',A_,A,,A_0) = I_+L+L t'A, (11 )

It is easy to verify that from 6Jt_t=O the same liuler's equation and natural

B.C. set those of VP I be derived with the that the natural l
/

aN Can onIw exception
..J
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[
B.(' on the blade surface A:_ has now become l!q.(9B).

Ct_IL_]_: The solution to tile above 3-1) ([t,.(H^)-problem makes the following

functional J,¢ statnonary: 6J.,v=l) with independent variations of 4', 4", p, f,., A_', A_,

A._ and A;,d.

• ,, " 4- -4- t"a'JtL_d',A,p,p,A, ,A_,A_,.k_)=I;_ k I. , (12)

t.rom b J;v 0 the same Euler's equations and natural ILC. set as those in (;VP I1
follo_ except only tlnat the natural B.C. on tile blade surface has become [(q. (9P,).

S_C,3'P_Fa_mily: By means of a constraint-recovering transformation 117] a family of

SCVPs can bc derived from the GVI' IV, including also the VP 111.

s. :A_Mjk)'- i !ty._¢!! Lt3

llere the B.C. on the annular walls still remain unchanged as before, _htle the

B.C. on the blade surface arc now given as follows:

(i) blade thickness distribution given by Eq.(gA):
(ii) pressure distribution along the suction blade surface:

q r -"

To establish the VP family for the (llc ,:llA)-problcm, we proceed mmilarly as
above. It turns out that this \.'1' family diflers from that for the (F'Aj,.ttA)-problem

only in tiiat the boundary integral term 1.^_ should be replaced by the following
[_ A_.

_-.) ,^_I_

while the Eq.(9A) should be treated as an enforced B.C.. In Eq.(14) the superscript
'o' denotes that the 'restricted variation' II0] should be taken. Thus, we lnave:

_L[L__L; For the (FtcXHA)-problem 6"Jv=0 with independent variations of '/', A:', A_, A::

and A:,_ holds, and

j v(ab,A_'.A _.,A_,A 2d)_ Iz+ L+ L cA, (15)

_VtL_VL'." For the (He XHA)-problem 6Jv,=O with independent variations of ¢, A', p, p,

A_ °, A_, A_ and A2a holds, and

J vj (4,,A",p,p,A;',A_,A_,A_)=i_ z+l.+lJ :_ , (16)

_.._/L_l_mily_; Applying the constraint-recovering transformation [171, we can

derive a S(;VP family for the (Hc)'.H_)-problem from GVP VI, including also the VP
V.

It car, be shown similarly as in previous sections that the Euler's equations

and the naturall B.C. sets of the VP V, GVP V1 and its derived SGVP family are

the same as those of the VP I, GVP II and its derived SGVP family respectively,

except that the natural B.C. on the blade surface now has become Eq.(13).

6. SOME GENERAL REMARKS

L 1) It is easy to see that the traditional direct problem (D)(D) [3,4] and inverse _J
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F problem (I :.i1) arc simply two special cases of tile (HA <ttA)-problem, corresponding

to A" (_ and A_0 respectively. Accordingly, by setting A_'-0 all VPs developed

herein reduce to those presented previously m Refs [3,4].

2) If, alternatively, the B.C. on tile upstream periodic boundary Az_, (namely
¢'"_-4"+_¢>_,) is imposed as essential B.C., the boundary integral terms on A_u
involved in L of all VPs should be dropped accordingly.

3) An alternatve approach to handling free trailing vortex sheets A_,a is also
posmble by taking formally no variation of A2o, though A2_ is unknown, but tile
interface conditions on A2d (namely a;,-a;_=o, p':-p') are enforced as essential ones
[211.

4) As stressed in Ref.[ll, sufficient attention should be paid to a rational

choice of tile position-variation 6s" of tile unknown boundarms A;" and Apd for

facilitating tile practical computation of (6s'.dA') & 6J, (i 1- VIi. Some

recommendations on this point are available in Ref.[ll and, of course, also valid for
the present case.

For better shock-capturing a special finite element with self-adaptive budd-in

disconhnuttms is very promimng and is now being under development.

The numerical solution.,; to the problems [(lt,+D)/l)] & [(He+I))<l)] obtained
for subsonic flow by finite elements in Refs.[19,22] show good agreement with
experimental results.

8. CONCLLISIONS

The unified theory of 3-1) hybrid problems of Refs [1,2] has been extended to

transomc flow with shocks. This theory is primarly aimed at providing, firstly, a
ne_, rigorous theorehcal basis of blade design for use in FEM and other direct

variational methods (e.g. Ritz's method, Kantorovich's method) and, seep,ally, a wide
varlet> of new rational versatile ways for new blade design and old blade

modification. It also constitutes an important ingredient of the optimal design
theory of 3-D rotor-bladings [6]. Based on the VPs for the direct problem of 3-D
rotational flow [3,4], the present theory can be extended also to 3-D rotational

flow. This will be presented in a companion paper.
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Abstract i "

A new method has been developed to optimize, in terms of aerodynamic wave drag
minimization, arbitrary (nonaxisymmetric) hypersonic vehicles in modified Newtonian flow, while
maintaining the initial volume and length of the vehicle. This new method utilized either a surface
fitted Fourier series to represent the vehicle's geometry or an independent point-motion algorithm.
In either case, the coefficients of the Fourier series or the spatial locations of the points defining
each cross section were varied and a numerical optimization algorithm based on a quasi-Newton
gradient search concept was used to determine the new optimal configuration. Results indicate a
significant decrease in aerodynamic wave drag for simple and complex geometries at relatively low
CPU costs. In the case of a cone, the results a_eed well with known analytical optimum ogive
shapes. The procedure is capable of accepting more complex flow field analysis codes.

Nomenclature

Cp

Cpo

P
Po.

O.

Am, Bm
x

y, z

S

7
A

F
A

n
M
S
FAC

= surface pressure coefficient

= stagnation pressure coefficient

= static pressure at a point
= free stream static pressure
= free stream Mach number

= angle between free stream and normal to the surface of a vehicle

= coefficients of Fourier trigonometric series for coordinates at cross section i

= Cartesian coordinate along the axis of the body
= Cartesian coordinates of a contour point at cross section i
= body cross section contour-following coordinate

= normalized body cross section contour-following coordinate

= specific heat ratio of the gas
= area of a panel on the body surface

= aerodynamic force applied to a panel

= unit normal to the body surface
= number of terms in the Fourier trigonometric series
= least squares summation
= percentage change in design variable

Subscripts



i

J
m
n

= ith cross section of the vehicle

= jth point of a cross section contour

= mth coefficient of a Fourier trigonometric series

= angle between free stream and local body surface normal
= free stream value

Introduction

Although optimization of axisymmetric hypersonic bodies has been accomplished in the
past [1,2], the aerodynamic drag minimization of an arbitrary hypersonic vehicle has not been
attempted [3]. The objective of this paper is to present an optimization procedure for arbitrarily
shaped hypersonic vehicles. While there are certainly some limitations in this paper, including the
choice of flow field solver and non-convergence for some shapes, it demonstrates that optimization
of numerous variables can indeed be done and that this can be applied to complex configurations.

In hypersonic flow (M_ > 5.0), the flow around an object may be modeled using an impact

theory. In this theory, oncoming particles strike, or impact, the surface of the object and impart the
normal component of their momentum to that body. Classical Newtonian theory has been shown
to approach reality when the free stream Mach number approaches infinity and the value of the ratio

of specific heats approaches T =1 [4]. In the case of lower hypersonic Mach numbers, modified
Newtonian theory has been shown to be quite satisfactory for predicting the aerodynamic forces
and moments on a body [5]. Modified Newtonian theory has the main advantage of being
extremely simple, accurate [6], and fast when faced with the thousands of flow field calculations
needed in an optimization problem of this scope. Because of the use of modified Newtonian
theory, it was implicitly assumed that the flow field was inviscid.

In this study, modified Newtonian impact flow theory was used with a modified
Newtonian constrained search optimization routine [7] to obtain vehicle shapes which had
significantly lower wave drag in inviscid hypersonic flow. In the first pan of the study, cross
section coordinates of the body were represented with curve-fitted Fourier series. Curve-fitted
Chebyshev series [8] were initially considered, but it was found that the Fourier series represented
complex shapes, such as a Space Shuttle configuration, better than the Chebyshev series. The
coefficients of the Fourier series, one set representing the y coordinate and one set for the z
coordinate (Fig. 1), then became the design variables that were fed to the optimization routine. The
optimization routine sequentially perturbed each of the coefficients by a small amount and
determined the new shape that reduced wave drag while keeping the volume and length of the
vehicle constant. In the second part of the study, the y and z coordinates of the vehicle's cross
section were used as the design variables directly. Again, the optimization routine perturbed
separately each of the coordinates at each of the cross section contour points. Then, it combined
the changes into a new shape with lower wave drag while still honoring the constraints of constant
volume and constant length of the vehicle.

Numerical Models

The first pan of this investigation used a least squares Fourier series curve fit to represent
the y and z coordinates of each half cross section, i, that is,

M

Yij =
m=l

Ami cos[(m- l)ns-i,j] (1)
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M

Zij = E Bmi sin[mng-i,j]

m=l

(2)

where -si,j is a normalized contour-following coordinate (Fig. 1) such that

f Si,j_
= Si,j. 1 + "_ (Yi,j-Yi,j.1) 2 + (Zi,j-Zi,j.l) 2 and -si,j -si,j

si,jmax

and Ami is determined from the least squares fit of the Fourier series

jlTlaX

(3)

E _ bSi= )2 and - O. (4)
Si ( (Ami c°s[(m-1)7_gi,j]) " Yi,j bAmi

m=l

j=l

The coefficients Bmi axe determined in a similar way. Since it was assumed that the vehicle had a

vertical plane of symmetry, the z-coordinates of the first (j=l) and the last (j=jmax) point of each
half cross section were always zero thus ensuring symmetry across the y-axis.

The local surface pressure coefficient, Cp,ij, was calculated by the use of modified
Newtonian impact flow theory, which states that

Cp,ij = Cpo coS20n,ij (5)

where 0n,ij is the angle between the free stream and the normal to the surface. The stagnation

pressure coefficient, Cpo, is given by

l 7

(6)

The pressure on a given segment of the body may then be calculated from the rearranged formula

for %,ij, that is

t M2** (7)Pij = P**+ g Cp,ij _' P**

The aerodynamic force on each surface panel is found by

A

Fij = " Pij A ij nij • (8)

so that the resultant force is obtained by summing up all of the panel forces

Ftotat = E Fij (9)

Aerodynamic wave drag was then the x-component of the resultant aerodynamic force.
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The optimization algorithm perturbed each of the Fourier coefficients to obtain a slightly
different shape. After pert :rbing all of the coefficients and analyzing these new perturbed shapes,
the optimization algorithn, combined the changes into a new shape that met the constraints of
constant volume and constant length, but which had a reduced aerodynamic wave drag.

The second part of the study was exactly the same as the first except that instead of
working with the Fourier series coefficients we worked with the y and z coordinates of the cross
sections' points directly.

Results

Four test cases were run for each part of this study. They consisted of a straight cone
having circular cross section shapes, a straight cone having a four pointed star as a cross section, a
stubby-wing shaped body and a Space Shuttle-like configuration. All cases were run at an angle of

attack of 0 °, a specific heat ratio of 7= 1.4 and a free stream Mach number of Moo =10. Notice that

the values for _' and M= appear in Cpo which may be factored out of the pressure coefficient ratio.

They affect the numerical amount of drag, but not the qualitative amount of drag. The x-axis for
each case was chosen to coincide with the long axis of the body. The y and z-axes were then
mutually perpendicular to the x-axis.

Fourier Series Al_,orithm: For the initial part of the study, twenty terms in a Fourier
series for y and z coordinates were used for seven cross sections. Twenty terms were chosen
because of the constraints of computational facilities (an IBM 3090 was used) and because twenty
terms were able to represent the geometries of all four test cases, including the complex Space
Shuttle shape. Only six of the cross sections were allowed to deform; the nose cross section was
kept constant to serve as a tip. Thus there were 6 x 20 x 2 = 240 design variables. Twenty-five
points were used per cross section; thus, the half body was discretized into 6 x 24 = 144 panels.
FAC, the percent perturbation of Ami and Bmi in the optimization algortihm, was set equal to 5%.

For the case of a right circular cone (Fig. 2), after a total of 43 iterations, the program
converged to an ogive configuration that had 47.96% less wave drag than the original conical
configuration. Note that horizontal and vertical symmetry were maintained.

The next shape tested was a four pointed star configuration (Fig. 3). The aerodynamic
wave drag of this shape was reduced by 39.16% after 43 iterations. This case did not converge
due to "fishtailing" of the fins and was terminated just before such fishtailing occurred. Note the
streaking near the nose and the thinning of the points on the last cross section. Also, notice that
vertical and horizontal symmetry was maintained and the f'ms gave an ogiving contour.

The third shape optimized was that of a "stubby wing" configuration (Fig. 4). The wave
drag was reduced by 64.62% when the algorithm converged after 53 iterations while preserving
the cross-axis symmetry. Again, note the streaking toward the nose and the smooth appearance of
four small fins along the wing tip line.

The fourth test case was that of a Space Shuttle configuration (Fig. 5). After 22 iterations,

the wing surface crossed itself and the process was terminated. Aerodynamic wave drag was
reduced by 18.52%. With careful scrutiny, one can notice that the centerbody has become ogived,
the wing thickness has been reduced, the wing roots have become filleted, and the underside of the
fuselage has been reduced in size.

The convergence histories (Fig. 6) indicate that the general trend is a monotonic decrease in
drag. This trend can also be seen from the drag plot (Fig. 7) which shows the percentage of
original drag remaining at a given iteration number (Table 1).

Point-Motion Algorithm: For the point-motion algorithm, 21 points per half cross
section were used. Only six cross sections were analyzed due to computer storage limitations.
With only five cross sections being active, this yielded 2 x 5 x 21 = 210 design variables and 5 x
20 = 100 surface panels per half cross section. FAC for this algorithm was set to 0.1%.
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Numerical optimization of a straight circular cone resulted in an ogive shape with
axisymmetry successfully maintained. After 49 iterations, the shape converged to that of Fig. 8
with a corresponding decrease in drag of 45.37%.

The second shape was the four pointed star. With the point-motion algorithm, the shape
converged after 35 iterations to that pictured in Fig. 8. There was a reduction of drag of 34.65%.
As in the case of the circular cone, symmetry was maintained across both the y and z-axes. The
resulting shape is very similar to that obtained by the coefficient algorithm. Considerably less
streaking can be seen near the nose of the star, while the fin planforms exibited significant ogiving.

The next shape optimized was the "stubby wing". The fin tips, after 24 iterations, crossed
themselves and the process was terminated. However, a decrease of 40.58% of the original wave
drag was achieved just before the shape cross-over. Note the development of the fins along the
side of the vehicle (Fig. 8) and streaks near the nose, somewhat similar to those developed when
using the coefficient algorithm. Once again, symmetry was maintained.

The final case for the point motion algorithm was the Space Shuttle vehicle (Fig. 8).
Similar to the case in the coefficient algorithm, the wing eventually crossed itself and the run was
terminated. A decrease in drag of 27.38% was found after 16 iterations preceding the cross-over.

For the point-motion algorithm, the convergence histories (Fig. 9) indicate monotonic
decrease in wave drag for all four test configurations. Figure 10 demonstrates the total reduction in
wave drag for the four test configurations when using the point-motion algorithm (Table 2).

A comparison (Figs. 11 and 12) of the numerically optimized ogive shapes with
analytically optimal ogives obtained by Sears and Haack and by von Karman [9] demonstrates the
reliability and accuracy of the numerical optimization algorithms.

Conclusions

Two procedures, a coefficient algorithm and a point-motion algorithm, for aerodynamically
optimizing aribitrarily shaped hypersonic vehicles have been shown to significantly reduce
aerodynamic wave drag while keeping the vehicle's volume and length constant. Both
formulations are very fast only because a modified Newtonian flow theory was used as the flow
field analysis algorithm. These formulations would be very effective as preliminary design tools
for unconventional hypersonic vehicles. The point motion algorithm can be used to keep parts of
the original vehicle fixed, such as cabin size or wing thickness, during the optimization. More
sophisticated flow field solvers that include viscosity and the effects of heat transfer could be
substituted in place of the modified Newtonian theory during the final stages of the optimization.
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Coefficient Test Case Drag Reduction (%)

Cone 47.96
Star

Stubb 7 win_
Space Shuttle

# of Optimization # of Analysis Calls

Cycles
43 10493
43
53

10493
12689

18.52 22 5125

Table 1. Drag reduction, number of optimization cycles and analysis cnlls for the coefficient test
cases that uses Fourier series representation.

Point-Motion Test
Case
Cone
Star

Stubble win_
S _ace Shuttle

Drag Reduction (%)

45.37%
34.65

40.58

# of Optimization
CTcles
49
35

# of Analysis Calls

24
16'

10273
7277

4923
27.38 3211

Table 2. Drag reduction, number of optimization cycles and analysis calls for the point-motion test
cases.

Y

j=l

j=jmax

z

Figure 1. Cross section contour-following coordinate system.
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a) initial
b) final

Figure 2. Straight circular cone shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial b) final

Figure 3. Four pointed star shape; coefficient algorithm: a) initial shape, b) final shape.



a) initial b) final

Figure 4. Stubby wing shape; coefficient algorithm: a) initial shape, b) final shape.

a) initial

b) final

Figure 5. Space Shuttle-like shape; coefficient algorithm: a) initial shape, b) f'mal shape.
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Abstract. In this work, a new approach is developed for analysis and_n of tran-

sonic airfoils. A set of full-potential-equivalent equations in yon Mises coordinates

is formulated from the Euler equations under the irrotationality and isentropic as-
sumptions. This set is composed of a main equation for the main variable y, and
a secondary equation for the secondary variable R. The main equation is solved by

type-dependent differencing combined with a shock point operator. The secondary

equation is solved by marching from a non-characteristic boundary. Sample compu-
tations on NACA 0012 and biconvex airfoils show that, for the analysis problem, the

present approach achieves good agreement with experimental Cp distributions. For

the design problem, the approach leads to a simple numerical algorithm in which the
airfoil contour is calculated as a part of the flow field solution.

(_ •

Q.

y i

1. Introduction

Transonic flow is a widely encountered phenomenon in aeronautics and astronau-

tics but is not easy to calculate because the flow field, and the governing equations

as well, are mixed type. Therefore, transonic computation had little progress until

1971 when Murman and Cofle developed a type-dependent difference scheme and

successfully solved the transonic small disturbance (TSD) equation[I]. Since then,

transonic computation has become one of the most upsurging topics for computa-

tional fluid dynarnicists[2-8]. In 1974, Jameson extended transonic flow computa-

tion to the full potential (FP) stage by constructing a rotated difference scheme[4].

Afterwards, papers were published on transonic computation by solving Euler equa-

tions[5,6] and their equivalent streamfunction-vorticity formulation[7,8]. Neverthe-

less, in spite of the recent active efforts on Euler tolvers, the full potential calculation

is still attractive due to its simplicity, ePilciency and suttleient accuracy.

The yon Mises transformation is a type of streamline-based transformation which

generates a streamwise coordinate system. The yon Mises formulation has a number

of advantages when applied in CFD. For example, one can resolve the problem of

body-fitting coordinates without performing any grid generation. This is because

the governing equation (flow physics) and grid generation equation (flow geometry)

are combined together in this formulation. Furthermore, the boundary condition on

the airfoil for the analysis problem is Dirichlet, and a non-iterative design technique

l J
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F can be developed for the inverse problem, leading to simplified numerical algorithms

and a saving of computer time. Therefore, since Barton[9] connected the yon Mises

transformation with Martin's approach[10] and solved incompressible 2-D symmet-

ric flow, numerical simulations based on the yon Mises transformation have been

considerably extended, such as to incompressible lifting[ll], axisymmetric[12] and

design[13] problems, and to transonic flow[14,15]. In addition, Greywall[16] and

Dulikravich[17] obtained a sinfilar formulation for incompressible and compressible

flows, respectively.

However, when extending Barron's approach[9] to transonic flow, several prob-

lems appear. For compressible flow, apart from the von Mises variable y, another

variable, the density p, must be updated in each iteration. But in the transonic

range, the classical difficulty of double value density-massflux relation still exists.

Besides, shock waves are not easy to handle in yon Mises coordinates either by

the artificial density technique or by type-dependent differencing. Recently, the

authors[18] developed a new approach to overcome these difficulties by solving so-

called full-potential-equivalent equations in yon Mises coordinates. The principal

advances over the previous transonic work[14,15] are as follows: 1) To update den-

sity, instead of solving the non-linear algebraic Bernoulli equation, a first order

partial differential equation is solved, thereby avoiding the double density problem;

2) To handle shock waves properly, a shock point operator in von Mises coordinates

is proposed and combined with the type-dependent difference scheme so that shock

waves can be captured correctly; 3) Introducing a concept of generalized density

linearizes the density equation.

In the next section, an outline of the mathematical formulation is given. The

numerical algorithms for analysis and design problems are constructed in sections 3

and 4. In section 5, sample computations are performed to test the approach, and

conclusions are given in section 6.

2. Flow Equations in Streamwise Coordinates

Two dimensional, steady, inviscid fluid flows are governed by the Euler equations

pu2pu+ p + puv = 0

| puv pv 2 + p

k puH , pvH j,

(2-1)

where p is density, u and v are velocity components in Cartesian coordinates, p is

pressure, H = _-___p/p + (u 2 + v2)/2 is total enthalpy and 9' is the ratio of specific

heats, p, u, v and p are normalized by free stream density poo, speed q_ and dynamic

pressure head pooq_ while z and y are scaled by the airfoil chord length.

Introducing streamfunction _b, such tha:t _/,_ = pu,_z = -pv and substituting
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into equation (2 -- 1), one gets

-,l,,%lp + ¢,/p+p] = 0. (2-2)

Streamfunction ¢ = ¢(x,y) can be rewritten in an implicit form, F(z,y,,/,) = 0,

or in an explicit form, y = y(z,¢). This process is equivalent to introducing yon

Mises transformation: z = ¢,y = y(¢,¢). If the aacobian a = 0(_.,y)/0(¢,¢) ¢

0, ca, then the transformation is single-valued and (2 - 2) becomes

y_/(py_) + = 0
H ¢ _,

(2-3)

where the total enthMpy H = -__lp/p+ (1 + y_)/(2p2y_). The streamline ordinate

y, called yon Mises variable, is viewed as a function of ¢ and ¢. The velocity

components can be easily calculated from u = 1/(py,_),v = y¢/(py¢), after y and p
are solved.

It is known that thc entropy increase across a shock wave is of third order of

the shock strength. So, if the shock is not strong, transmfic flow can be assumed

isentropic and irrotational. Replacing the energy equation in (2-3) by the isentropic

relation and keeping in mind that ¢ = z, we reduce (2 - 3) to

1
(-- + pv¢). - (_,)¢ = 0, (2-4a)

PY,p

(_)_ + p_ = 0, (2-4b)

p'_
= (2-4c)

P "rM&'

(y_), 1 + y_
p - (_)V, = 0 (2-4d)

where Moo is free stream Mach number and the last equation is the irrotationality

condition, w = 0, expressed in yon Mises coordinates. Substituting (2 - 4e) into

(2 - 4a) and (2 - 45) and expanding (2 - 4d), we get

2 p-_+l 2 p7+I

P 2 P'_+;Y_Yzz - YzYz,p - Y:Y_, + Y, _ pep = O, (2-5b)

7
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F Y_Yzz -- 2yzywy_ + (1 + Yz)Y_,,_, - YzY -{-y_,(1 + y_)Pe' --- O. (2-5c)
P

Properly manipulating the above three equations can produce several sets of equa-

tions. Each set has two indepcndent equations for two variables. To make the

formulation more compact, define generalized density R = p-r+1 as an alternative

to density p. Solving for p_/p and p_,/p from (2 - 5a)and (2 - 5b), and substituting

into (2 - 5c), one gets

2
R

(2-6a)

Eliminating yz_, from (2 - 5a) and (2 - 5b) gives

2 2
y_y_,R_ - y_,(1 + y_)Re = (3' + 1)M_y_. (2-65)

Equation (2 -5a) can be rewritten as

2

- Y_Y¢ _ = (7 + 1)M_y_,. (2-6c)

Substituting the above y_,y_, into (2 - 5c) and replacing p by R, one obtains

y_(y_ MLR )R_ + y,_(1 - y2 M_ 1 + y_ 1)M_ 1 + y, (2-6d)

It is important to note that (2 - 6b) is linear after introducing the new variable R.

The term M_/R is usually called compressibility factor.

In principle, any two of the above four equations could be combined as a set of

equations to solve for y and R. But, in practice, equation (2 - 6a) is always selected

to solve for y and one of the remaining three equations is selected to solve for R.

Equation (2-6a) is a second order, non-linear, partial differential equation of mixed

type depending on the local flow property. If the flow is subsonic/supersonic, then

(2 - 6a) is elliptic/hyperbolic. In other words, the mathematical classification of the

equation is consistent with the physical nature of the local flow. Therefore, (2 - 6a)

is named the main equation for the corresponding main variable y. Equations (2 -

6b) - (2 - 6d) are called secondary equations for the secondary variable R. Among

the three secondary equations, (2 - 6b) appears simpler because it is linear and

hence priority is given to it to _,ccompany the main equation. The main equation

(2 - 6a) and one of the secondary equations (2 - 6b) - (2 - 6d) constitute a set

of so-called full-potential-equivalent equations. They are coupled with each other

and solved in an alternating and iterative manner. More details and other forms of

full-potential-equivalent equations can be found in [18].
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F
3. Analysis Problem

For a symmetric airfoil placed in a transonic stream at zero angle of attack, the

governing equations (2 - 6a) and (2 - 6b) can be rewritten as

A_y_:, + A2y,:w + A3y,_,_, = 0, (3-1)

B1Rz + B2R_ = B3 (3-2)

y_, B1 2whcre A1 = y_ - M_/R, A2 = -2yzy,l,,A3 = 1 + = y_yu,,B2 = -y_:,(1 +

y_),B3 = (7 + 1)M_yz_. The boundary conditions on y are Diricldet: y = f(z)

on the airfoil, y = ¢ at infinity, y = 0 on the symmetry line and R = 1 at infinity,

where f(z) is the airfoil shape function. The computational domain and boundary

conditions arc shown in Fig.1.

Since the mathcmatical character of (3 - 1) depends on the local flow property,

it is necessary to apply Murman and Cole's type-dependent schemc[1] to solve for

y. Applying the type-dependent diffcrenee scheme to (3 - 1) gives

Ayi,j-x + Byi,j q- Cyi,j+l = RHS (3-3)

where A =/32A3 - L_-e-13A2,B = -2f12A3 + (1- 3v)A_, C = f12A3 + L_-e-flA2,

RHS = - vAl(yi+lj + yl-x,j) + (1 - v)A_(2yi-1,.i - yi-2,j)

-- v/3A2(yi+l,j+l - Yi+l,j-1 -- Yi-l,j+l "[- Yi-l,j-1)/4

-t- (1 -- _')flA2(yi-l,j+l - yi-l,j-1)/2,

and /3 = Az/Atb , for i = 2, 3, ..., Im,_ - 1,j = 2, 3, ..., Jm,z - 1. The switch

parameter v = 1 for a subsonic point, v = 0 for a supersonic point. The resulting

system of differcnce equations (3 - 3) has a tridiagonal cocfflcient matrix so that

SLOR can be applied by relaxing along vertical lines, sweeping from left to right

and iterating up to convergence. (see Fig.l)

After y(:e, ¢) is solved from the main equation (3-1) and yz, Y¢, yz_ are properly

differenced, the secondary equation (3 - 2) can be solved for R(z,¢) by marching

from an initial line other than its characteristic curve. The slope of its characteristic
2

curve is d¢/dz = -(1 + y_)/(y_y,p). At infinity, d¢/dx. = ¢x). Thus, left and right
far field boundaries are characteristic curves and hence cannot serve as initial lines.

Fortunately, the horizontal boundary is not a characteristic and we can march

equation (3 - 2) from the top boundary to the airfoil using the condition R = 1 at

infinity.

The Crank-Nicolson scheme for (3 - 2) gives

.4Ri-l,i + BRi,.i + CRi+l,.i = RH_S (3-4)
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where RH_S = CRi-,.j+, + .BRi.j+, + ._Ri+,,j+, + 4AxBa,.A = -B,,B = -4fiB2,

= BI,_ = Az/_¢ forj = Jmaz - 1,...,3,2,1,i = 2, 3, ..., Ima_ -- 1. The system

of difference equations (3 - 4) can be solved row by row from the horizontal far field

to the airfoil using SLOR, but no iteration is needed because (3 - 2) is linear. After

R is solved, the pressure coefficient is calculated from

cp = - 1). (3-5)

However, it has been found after numerical tests that this procedure is efficient

only for flow in which the shock is weak. For flow with a stronger shock, the itera-

tions fail to converge. To overcome this difficulty, a special treatment of the shock

wave is proposed following the ideas of Murman's shock structure analysis[2,3]. For

usual transonic flows, the shock wave is approximately normal and the shock jump

conditions are given by

= 0, = 0. {3-6)

where [...] represents a jump across the shock. Based on this analysis, the difference

quotient approximations to Yz,,Y,, at a shock point, i.e. grid point just behind the

shock, are constructed as below:

1
(3-7a)

(Yz_ )i,j

1
- (yi+l,j+l - yi+l,j-1 + yi,j+1 - yi.j-1

4Az&¢

- 3yi-l,j+l -4- 3yi-l,j-1 + Yl-2,j+a - Yi-:,j-i ). (3-7b)

where % is the density jump factor on jth streamline and given by the Rankine-

Hugoniot relation of a normal shock. (3 - 7a) and (3 - 7b) are called shock point

operator (SPO) in yon Mises coordinates. The differenceequations (3 - 3) for y

and (3 - 4) for R are modified using SPO. Numerical experimentation has shown

that SPO must be applied in the y,,,y_¢ terms of the main equation (3 - 1) and

in the B3 term of the secondary equation (3 - 2). SPO is a crucial tool to capture

shock waves in supercritical transonic flows.

4. Design Problem

Similar to the analysis problem, the main equation (2 - 6a) and secondary equa-

tions (2 - 6b) or (2 - 6c) can be solved for y and R alternatively:

A_y_ + A2y_, :+ A3y_,¢ = O, (4-1a)
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r
BIR_ + B:Rv = B3, (4-1b)

DxR_ + D2R_ = D3 (4-1c)

2 _ M_/R,A: As 1 2 2where A1 = y_ = -2y_y,.,, = + yz,B1 = y_:y_,,B: = -y_,(1 +

2 -y_:y_, Ds 2y_),Bs = (7 + I)M_yzz,D1 = y,_.(y_- M_/R),D2 = = (7+I)M_yz_..

The boundary conditions arc the same as in the analysis problem, except on the

airfoil, which is unknown. There, the pressure coefficient Cp° is specified, hence,
the generalized density is also specified:

R° = (1 + 7M_Cp, I2) ('_+1)/'_ (4-2)

On the airfoil surface, the Bernoldh equation in von Mises coordinates leads to

- = 1 (4-3)

where
1

2 7- M 2 _R_:v,
F(x)- (7- 1)M_ [(_ + --2- _' ' - n,].

This is a Neumann boundary condition on the airfoil when solving (4 - la) for y.

(4 - 2) is a Dirichlet boundary condition on the airfiol when solving (4 - lc) for R.

In addition, on a symmetry line off the airfoil, R¢ = 0.

If streamlines do not intesect each other on the airfoil, then y¢ > 0, and if, fur-

thermore, F(x) _ 0 on the airfoil, then cquation (4-3) gives y¢ -- .v/(1 + y_)/F(x).

For most practical transonic flows the required conditions are easily satisfied as long

as Cp, is reasonably specified. Differencing y_, we get

Yi,1 = [4yi,2 - Yi,3 - 2G(xi)]/3 (4-4)

where G(xi) = A¢-v/[1 + (y_)i,1]/F(xi). Considering this new boundary condition,

we modify system (3 - 3) as follows:

For j = 2, equation (3 - 3) reads Ayi,1 + Byi,2 + Cyi,a = RHS. Substituting
(4 - 4) into it, we have

(B + 4A/3)yi,2 + (C - A/3)yi,3 = RHS + 2AG(xi)/3 (4-5)

Replacing the first equation in system (3-3) by (4- 5), solving the resulting system

and applying (4 - 4), we can obtain the desired airfoil contour f(zl) = Yi,1 without

further iteration of the airfoil shape. The computational domain and boundary

conditions are shown in Fig. 2.

To solve for the secondary variable R, two secondary equations (4 - lb) and

(4 - lc) are available. For equation (4- lb), the marching procedure is the same

as in the analysis problem, while for equation (4 - lc), the marching procedure is

1 J
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F different. The slope of its characteristic curve is d¢/dx = -(y_y,,)/(y_,- M£/R).

At infinity, d¢/dz =. O. So, the horizontal far field boundary is a characteristic

curve, but the vertical boundaries arc not. Therefore, the marching process can be

carried out from left to right.

Crank-Nicolson scheme for (4 - lc) gives

ARi,j-1 Jr- J_Ri,j "b CRi,j+l = Rf]S (4-6)

where R['IS = CRi-l,j-1 + BRi-x,j + _,Ri-a,j+l + 4AxD3,.4 = -flD:,B = 4Da,

= flD2,_ = Ax/A¢, for i = 2, 3, ..., Ima_ - 1,j = 2, 3, ..., Jma_ - 1.

For the first equation in system (4 - 6), the boundary conditions Ri,x = R_(z_)

on the airfoil and Ri,x = Ri,2 on syrmnetry line should be imposed. It is noted that

y_ in D3 should be type-dependent differenced with SPO to keep consistency with

the main equation.

Both (4-lb) and (4-lc) have been coupled with (4-la). Numerical experiments

have shown that (4 - lc) gives better accuracy than (4 - lb). This is reasonable

because the boundary condition on the airfoil is considered not only in the main

equation (4 - la), but also in the secondary equation (4 - lc), while it is not suitably

considered in the secondary equation (4 - lb). However, the price to pay is more

iterations because (4 - lc) is non-linear.

5. Sample Computations

The approach developed here is applied to calculated transonic flows for both

analysis and design problems. Only symmetric airfoils at zero angle of attack are

considered, but both suberitical and supercritical Mach numbers are included. In

the computational domain, a 65x33 uniform mesh covers -2 < z < 3, 0 < ¢ < 2.5

and the airfoil is placed between 0 and 1. For higher Mach numbers, a 80x31 mesh

has been used. The computational domain and boundary conditions are shown in

Figures 1 and 2.

Figures 3 and 4 are comparisons of calculated Cp distributions of NACA 0012 with

experimental data at NAE[19] for Moo = 0.490 and at ONERA[19] for Moo = 0.803.

Figure 5 indicates the calculated Cp distribution of a 6 percent biconvex airfoil at

Moo = 0.909 compared with experimental data at NASAl20]. From these plots we

can see that the present approach is able to accurately predict Cv distributions on

airfoils in transonic flows. The agreement between computed pressure and available

experimental data is quite satisfactory. For supercritical transonic flows, the shock

wave can be captured by the presently proposed type-dependent scheme with SPO.

Figure 6 shows the designed contour of a 6 percent biconvex airfoil compared

with the exact shape[21]. The specified Cp distribution on the airfoil comes from

experiments at NASAl20] for Moo = 0.909. Figures 7 and 8 give designed NACA

0012 contours compared with the exact shape[21]. The specified Cp is from NAE[19]

for Moo = 0.490 and ONERA[19] for Moo = 0.803. Here, we can see that the present

approach is capable of designing airfoil contours with satisfactory accuracy.
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F
6. Conclusions

1) The newly developed approach based on the full-potential-equivalent equations

in yon Mises coordinates is able to solve transonic flows for both analysis _ld design
problems.

2) The full-potential-equivalent equations are composed of a main equation for

the corresponding main variable, streamline ordinate y, and a secondary equation

for the related secondary variable, generalized density R.

3) The type-dependent difference scheme with shock point operator is effective

to solve the main equation for y and the shock point operator is crucial to capture

shock waves in supercritical transonic flows.

4) The secondary equation can be solved for 12 by marching from a certain non-

characteristic, density-specified boundary. Crank-Nicolson scheme proves to be use-
fill to march such a equation.

5) For analysis problems, the boundary condition on the airfoil is Dirichlet, which
is easy to implement.

6) For design problems, the airfoil contour can be obtained in a non-iterative

manner because it is a part of the solution of the main equation.
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RESEARCH ON INVERSE METHODS AND OPTIMIZATION IN

ITALY

Francesco Larocca

FIAT AVIO, Corso Ferrucci 112, 10129, Turin Italy J _, ,/
/ /: ( ;

/

1 Introduction _ i.... ( "

The paper deals with the research activities in Italy on inverse "design and optimization. The review is focused

on aerodynamic aspects ill turbomachinery and wing sections design.

Inverse design of blade rows and ducts of turbomachinery in subsonic and transonic regime are illustrated

here by the contributions of "Politecnico di Torino" and turbomachinery industry (FIAT AVIO).

As far as turbomachinery design is concerned, the development of an optimization technique is shown by the

contributions of the "Universita' di Genova".

Contributions from tile " Universita' di Bari " illustrate recent progress in aerfoils design in tile field of

subsonic flow.

2 Turbomachinery Components

2.1 Design of cascade and ducts in transonic flow

A methodology to solve inverse design problems for channels and blade rows, assuming the flow to be multidi-

mensional and the fluid inviscid, compressible and ideal, is described in [1]. The methodology is based on the

procedures described in [2] for the solution of inverse problems in 2D channels, in [3] for 2D inverse cascade

problems, in [5] for 3D inverse blade rows problems. An updated version of the methodology is described in

[6] for both 2D and 3D inverse problems in channels and blade rows.

The basic idea is described in [2]. Briefly, a time-dependent computation is performed in a duct, where a

distribution of pressure is prescribed on a wall, the geometry of which is unknown and has to be determined.

Such a wall is a boundary of the flow field and it is assumed as a flexible and impermeable surface. Some

initial configuration is guessed for the shape of the wall and for the internal flowfield. During the following

transient the flexible wall move in a wavy fashion and, at the end, it will assume the steady shape required

by the prescribed pressure on it and in agreement with the steady internal flow.

A coordinate transformation is used in order to map the physical region, whose shape depends on time, into

a computationM domain, whose shape is independent of time. The Euler equations are integrated in time by

a finite difference method on the time-dependent, body fitted, grid defined by the mapping.

In order to show the way the solution is gained in time, we report here one of the examples of [2]. The Ringleb

flow [8] was taken as benchmark case. A set of streamlines ¢ = const of the Ringleb flow are plotted in fig. 1.

Once two streamlines are selected, they may be regarded as the solid walls of a channel, and, from the point of

view of an inverse problem, the theoretical pressure acting on these may be taken as the design input datum.

The chosen channel is in the transonic region, and is confined by the streamlines ¢ = 0.8, ¢ = 1.0 and by the

radial coordinate lines 0 = 40 °, 0 = 90 °.

Fig. 2 shows the shapes of the walls during the transient (solid lines), from the initial guessed configuration

(K = 0) to the final one (K = 500). The dots denote the theoretical location of the streamlines. The

maximum relative error of the location of the wall points is less than 0.6%, while the maxinmm relative error

of the computed Mach number in the whole flow field is less than 0.4%

J
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[ Since [2] was published, several improvements have been done. Upwind numerical schemes have been adopted _
to attain consistency with the wave propagation phenomena described by the Euler equations, as a consequence
the computation at the boundaries has been improved; the extension to 3D problems has been shown feasible;

different formulations have been attempted. The path of the evolution runs from [2] to [6].

2.1.1 The cascade problem

For a 2D cascade of airfoils, the inverse problem consists of finding the geometry of a cascade producing a
flow of which some parameters are prescribed. There is a certain freedom in the formulation of the problem.
We confine the discussion in the present report to problem for the 2D and 3D cases, where, in addition to

suitable condition at infinity one may prescribe the distribution of thickness and load along the chord of a
profile, and inquire for the geometry of the camber line.

In [2] - [6], the problems are solved by using the technique briefly outlined in the previous section: a time-

dependent computation is performed, in which the boundary conditions are imposed according to the formu-
lation of the inverse problem, until a steady state is reached asymptotically. The contours of the blades are

considered as impermeable but perfectly deformable. An initial geometry is assumed. Since such a geometry is

incompatible with a steady motion, consistent with the prescribed conditions, a transient is generated. During
the transient, the walls of the blades change in shape, in order to satisfy the condition of impenetrability. The

solution of the inverse problem is given by a geometry obtained asymptotically.
The reader may refer to Ref.[3] and Ref.[7] for the discussion of the 2D different problem formulations.

We proceed now to describe the process, in particular the boundary conditions, that have been chosen to

generate the solution, confining ourself to the physical viewpoint.
Figs. 3a) and 3b) show typical initial and final configurations. The flow is assumed to be confined between

two consecutive blades, the arcs BC, and two parallel lines issuing from the leading edge and the trealing edge
of the blades. The lines in front of the blades are denoted by AB. The lines behind the blades are denoted
by CD. Such boundaries are assumed to be impermeable and perfectly deformable; therefore, we can think in

terms of a flow within a channel, the geometry of which may change in time, although its width (measured
parallel to the p-axis) is independent of time. The channel is confined by the permeable boundaries AA and

DD, upstream and downstream, respectively. The inlet boundary AA is considered fixed in time, whereas

the exit boundary DD can slide upwards and downwards, maintaining a constant pitch. A time-dependent
computational grid, which fits the boundaries, is defined inside the channel.

The design data are prescribed, according to problem formulation, by giving the distribution of thickness r(z)
and pressure jump between the two sides of the blades, Ap(z). Since the flow is periodic, the upper and lower

boundaries of figs. 3 can be reduced to a single boundary for a single blade, as in fig. 4. Note that the upper
part of the ABCD line in figs.3 is the lower boundary in rigA, and viceversa.
The arcs, AB and CD are deformable and impermeable interfaces, across which the pressure is continuous but
the tangential velocity component may be discontinuous. In fornmlating the boundary conditions, the whole

ABCD arc can be treated homogeneously. The interfaces can be considered as surfaces of blades for which a

vanishing thickness and a vanishing pressure jump are prescribed. With this convention in mind, we procede
to describe the technique for any blade surface.

In fig. 5 we show two grid points on two different sides of the blade, at the same abscissa. The velocity vector

is decomposed along the tangent and the normal to the blade at each point. Since the blade is impermeable,

the two flow velocities and the blade velocity nmst have the same normal component. Moreover, by imposing
the pressure jump Ap(z) to be constant in time, the boundary conditions that allow the geometry and the
the flow to be updated at each computational step, are obtained.

At the iltlet boundary AA (figs.3) we prescribe the total pressure, the total temperature and the flow angle,

if the flow is subsonic, whereas all the flow quantities are prescribed if the flow is axially supersonic.
At the exit boundary DD no boundary conditions are needed if the flow is axially supersonic, while in the

case of subsonic flow, the kind of boundary conditions to be enforced has to be selected carefully, in fact, as

it is discussed in [1] and [3], the inverse problem has not an uniquely defined solution. The kind of boundary
conditions that is used selects one solution among the possible ones.

The numerical process used approximates the governing equations written in quasi-linear form, as a conse-

uence it is not conservative and weak solutions are not captured spontaneusly, but they need some speciall _J
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F_reatment. This shortcoming is the price to be paid for the main that numerical of-'_
advantage our process

ers: tile capability of computing the boundaries in a way consistent with domain of dependence due to the
!

hyperbolic nature of the governing equations, avoiding the need for spurious additional numerical boundary

conditions. This point is crucial for the success of method,in fact the computation in a domain whose physical
shape depends on the solution is very sensitive to the way the boundary condition are enforced and any
mistreatment may produce catastrophic instabilities.

Moreover, the inverse problems that generally one asks to be solved are shockless and the need for shock-

capturing capability is rare; if this capability is requested, the scheme can be easily converted in a conservative

Flux Vector Splitting scheme, as described in [121.

Ill the early formulation [3]-[5], a numerical procedure to solve inverse problems has been developed according
to the lambda-scheme [9] and [10]. Briefly, the wave system affecting a given point in an unsteady flow

field is described by four orthogonal waves. The A-scheme uses one-sided differences to approximate the
compatibility equations relative to the four waves, according to their direction of propagation and, as a

consequence, satisfying the domain of dependence. The computations of a transonic shockless compression

comes quite accurate and, besides that, the computation at the boundaries is simple and naturally suited
for this kind of numerical scheme based on compatibility equations, avoiding almost completely the need for
numerical additional boundary conditions.

Two numerical examples are here presented according to the selected formulation and prescribing the static
pressure pc as exit boundary condition. Further examples are shown in Ref. [3].

Fig. 6 shows the initial configuration and fig. 7 the steady solution to the inverse problem for the case
corresponding to

_" = ,025 [1 - cos(2_z)] Ap = c[1 - cos(2,_)] (0 < • < 1)

The ratio p_/pO between downstream pressure and total pressure is 0.8, the upstream flow angle _, is 20 °,
and the upstream nondimensional total temperature ®o is 1, while c = .1. Both this case and the following

one have been computed using 40 intervals in z and 10 in _/.
A check on the accuracy of the computation is shown in fig. 8, where the theoretical behavior of the y-
momentum is compared with the numerical result. The maximum error is less then i%.

The case of fig. 9 has the same ¢, c,,, and ®° as in the preceding case, but c = 0.15 and p_/po = 0.71.

The resulting cascade is supercritical but unchoked and shockless. It can be seen from the isoMach lines of
fig. 9 that a supersonic bubble appears on the upper side of the blade, but the lower side is entirely subsonic.

Tile pressure cannot be discontinuous on the subsonic side; therefore, it must be continuous on the supersonic

side as well, since Ap is prescribed as a continuous function of z.

A further examph is presented in fig. 10. It refers to the axial cascade with supersonic inlet Much number,

but having subsonic axial component. In this case the regime of unique incidence is established and it requi_es
a boundary condition at inlet wich does not violate the simple wave region upstream of the cascade. This is

obtained by imposing, at the inlet boundary, besides the total pressure and total temperature, the compatibilty
relationship between Much number and flow direction along a Much line for steady supersonic flow. In fig. 10

the isomach contours are presented; the inlet Much number is equal to 1.19, while th exit flow is subsonic and

the cascade is shockhss. In fig. 11, as a check, in the odograph plane the upstream flow field is presented.

The simple wave region is well described, as it can be seen by the points belonging to a unique epicycloid.

In Ref. [4] a different formulation of the 2-D inverse problem is attempted: instead of looking for the shape

of the walls, which in turn define the grid, it is looked for a whole orthogonal grid which adapts itself to the
solution of tile inverse problem, the Euler equations are written by assuming a set of indipendent variable

that, at the steady state, coincide with the stream function and with a curvilinear co-ordinate along the lines
orthogonal to the streamlines. The Euler equation so written are integrated in time according to the A-scheme,

the numerical process turns out very simple and quite accurate. The main drawback of method presented in

[4], is that such method has not a straighforward extension to 3-D problems.

L The success of a computational method aiming to solve nmltidimensional probhms governed by the time-
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dependent Euler equationsliesmainly and obviously the scheme and the oilon integration on treatment

the boundaries. The A-formulation shows good qualities in both respects, it does not violate the domains"

of dependence and it allows the boundaries to be treated in a way consistent with the wave phenomena
approximated in tile inner flow field. Nevertheless, the upwind schemes to approximate nmltidimensional

wave phenomena have a sort of weakness being necessarily based on the approximation of waves propagating

along a finite number of directions, while the possible directions along which actual waves propagate are
infinite. The problem is addressed in Ref. [10], and, lnore recently, in Ref. [11]

Following Ref. [11], tile 3D time-dependent Euler equations written in tensor notations, can be rearranged in a

form suitable for upwind discretization by decomposing the 3D unsteady motion as due to waves fronts parallel
to the coordinate surfaces; the resulting set of equations prompts an upwind discretization that preserves the
3D nature of the actual flow and that is particularly convenient from the point of view of the treatment of
the boundaries.

The resulting scheme is very close to the A-scheme, coinciding with it for orthogonal grids; moreover, the
boundaries can be treated avoiding completely the need for local frames of references and additional boundary

conditions, even in the case of non orthogonal grid. Details on this matter can be found in [11].

2.1.2 Examples

Here threenumerical resultsare presented:the firstone refersto the design ofa 3D rotational,transonic,

convergent-divergentnozzle,whilethe othertwo referto the designof turbomachinery bladings.In order to

testthecapabilitiesofthe presentinversetechnique,inRef. [1]the authorschoose an example with a distorted

geometry,quite farfrom the guessed initialone. Fig. 12a) shows the 3D view of the initialconfiguration

and Fig.12b) the finalone that solvesthe inverseproblem. The solidwallsare planes.The design pressure
distributionoilthe lower moveable wallis

Pd ---- .8- .7z 3

on the upper wall:

p,= .s- .3511- cos(,x3)]

On the inletboundary the totaltemperature iskept uniform and constantintime ®o = i,the flowvelocity

has the directionofthe zs coordinatelinesand the totalpressureobeys the law:

pO 1 Ap°(y I 1 1 1= - -  c)/(yb - Ap0= .1

The resulting flow is rotational and non homoentropic.

Figg.13a), 13b) show the isoMach lines over the left and right solid walls, Figg. 14a), 14b) over the upper and

the lower moveable walls and Figg. 15a), 15b) over the inlet and exit surfaces, respectively. Figg. 16a), 16b)
show the constant-entropy lines on the inlet and exit surfaces, respectively.

The second examph refers to the design of the blades of a statoz. Figg. 17a), 17b), show the initial and final

3D view, respectively. The tip and hub solid annulus walls are cylindrical with rt/rh = 1.5.
The design thickness and the design loading are, respectively:

r = .07sin L Y_ - Y?J Ap = .08sin L Yt3---_J

with y_ - y_ =axial chord.

At the inlet boundary the flow is axial. The total temperature is kept constant 0 ° = 1, while the tototal

pressure is distorted:

p° = gv/_ + h

with g = .1/(v/_- v/_,), h = 1.- gx/_"

At the exit surface, a distribution of pressure, in agreement with an approximate solution based on the radial
equilibrium theory, is given as boundary condition, with pa = .7 at hub radius.

Figg. 18a), lgb) show the isoMach lines on the blade to blade surfaces at the hub and tip radii, Figg. 19a),
19b) on the pressure and suction sides of the blades, respectively. Figg. 20a) and 20b) show the constant

entropy lines at the inlet and exit surfaces. .2
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The constant entropy surfaces coincide with stream-surfaces; as it has been pointed out in Ref. [5], looking-]

at Figg. 20a) and 20b) one would expect to see the typical rotation of such surfaces as consequence of the I

secondary flows generated in 3D rotational flow. ActualJy, a streamwise component of the vorticity is correctly

generated, it does not reveal itself as a rotation of the streamtubes, but ra_her as a peculiar twisting of the

blades: the loading is prescribed as design datum and it cannot be decreased as a consequence of secondary

flows, but the lower is the to_al pressure (and density) the higher the deflection to provide such loading.

Finally, two integral checks have been done on the continuity and angular momentum of the computed

how field: Fig. 21 shows the mass flow computed on cross sections along the blade to blade channel; Fig.

22 compares the angular momentum evaluated on cross sections along the channel with the corrisponding

theoretical torque due to the design loading.

In the third example the annulus walls form a conical surface at hub radius, and a cylindrical surface at tip

radius. The flow at entry is assumed to have axial dieection, with constant total temperature and a parabolic

distribution of total pressure, the smallest being at hub radius. A certain d_tribution of thickness and pressure

jump as functions of the radial and a_al coordinates are assumed, r -- g(v 1, V3), Ap =/(V 1 , _/_). At the exit

surface, a distribution of pressure, in agreement with an approximate solution based on the radial equilibrium

theory, is given as boundary condition, a.s weU as in the previous example,

The initial configuration of the blade row is shown in fig. 23a). The blades are without camber and twist.

Fig. 23b) shows the final configuration of the blade row. Figg. 24 and 25 represent the isoMach lines of the

initial and final configuration of blade to blade section at hub radius, respectively. Figg. "26-28 represent the

final configurations of the intermediate and tip blade to blade sections. The threedimensional nature of the

flow field and the twisting of blades is shown in these results.

The flow is transonic, in fact a supersonic bubble ex_ends from hub to tip on the section side. Figg. 29 and

30 show the isoMach lines on the projection on the meridional plane of the suction and pressure sides of the

blades, respectively. Finally, figg. 31a) and 31b) show constamt entropy lines on the sections normal to the

a.XlS, corresponding to the trailing edges and the exit of the streamtube.

The constant entropy surfaces coincide with stream-surfaces. Figg. 31a) and 31b) show the absence of the

typical rotation of such surfaces and the peculiar twisting of the blade to blade channel, as well as in the

previous example.

2.2 Design optimization of axial compressor

The aerothermodynamic design of turbomachines requires a number of indipendent parameters which results

in a multiplicity of possible design configurations. #

In order to have an optimized design of turbomachinery components, the choice of many design parameters

requires an optimization problem to be solved in an early stage in the design cycle. The objective function in

a general optimization problem represents a basis for the choice between various equally acceptable designs.

A computational procedure for design and optimi_.ation of axial turbomachines has been presented in [15].

The geometrical and fluid dynamic optimi_ed quantities are obtained by coupling non Linear minimization

algorithms with methods for flow analysis and design. In the early formulation [16], the optimi_ed design

methodology uses the fluid dynamic analysis at mean diameter for axial turbine/compressors stages.

The optimization procedure presented in [15] and [16], is based on a constrained non linear minimization

problem and is obtained by using three different methods: Moa_e Carlo, Siraplez and Gradient. The numerical

optinfization strategies used in [16], based on a combination of the previous methods, has shown that the best

results are obtained in general by enforcing the three methods sequentially.

In the work presented in [17], the authors used objective functions that are composed not only of a single

variable, but of a combination of variables. This is done in order to avoid the improvement of a single quantity

(e.g. efficiency), to the detriment of other important compressor characteristics. Moreover, multivariable

objective function is used so that the optimum design of an aerospace or industrial compressor can be found

using the same numerical procedure and ascribing suitable importance to the efficiency (r_TT), stall margin

(identified by a coefficient C_) and weight of the machine (identhSed by a specif area A,p), whose linear

combination represents an appropriate objective function.

L For the design of an axial flow compressor stage, the following parameters are taken as the design variables'._
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X1 = stage enthalpy drop (¢)
X._ = inlet flow coefficient (¢)

X3 = stator outlet absolute flow angle (aa)
X4 = mean diameter of the stage (D,,,)

X_ = rotor axial velocity ratio (AVRR)
X6 = stator axial velocity ratio (AVRs)

X7 = stator solidity (as)

Xs = rotor solidity (an)
Xo = rotor blade chord to mean diameter ratio (Cn/D.,)

X1u = stator blade chord to mean diameter ratio (Cs/D,.)
XI1 = stator max thickness to chord ratio (tm/C)s

X12 = rotor max thickness to chord ratio (t,,,/C)1z

Tile design process is shown in fig. 32. For given design specifications, the design parameters, defined at

mean diameter, are guessed at the beginning of the computation and they define a first rough design wich is
modified during the analysis design procedure in order to mininfize the objective function. The evaluation

of the efficiency is performed by using performance analysis of the stage defined by the actual values of the
indipendent variables, while the stall margin is computed by using some simple correlation [19] suited for

preliminary design studies.

The constraintsof the optimizationdesignmethod could be of two kinds. That is,rectangularconstraints

wich are directlyappliedbn the designvariablesand they come from the fieldof the possibleapplicability

of the correlationsused in the objectivefunctionevaluation.However, a diretconstrainingof any single

design variabledoes not ensure that,in a particularcombination of them, some of the mechanical or fluid

dynanfic variablescould exceed the usual limits.For these reasons,non-rectangularconstraintshave been

chosen:they are relatedto the aerodynamic loading,flowinstabilities,limitingflowratethrough a/low path

element,aeroelasticaspect of compressor blade rows, and noisegeneration.In order to take into account

thesenon-rectangularconstraintsof the problem itisnecessaryto introduceinthe optimizationprocedure

the penaltyfunctiontechnique.The optinfizationproblem isstatedas a non linearprogramming problem as
follows:findX that ininimizes

f(X) = G,I(1 - _TTT) + GA(1 - As,,,) + Gc(1 - Ch)

subject to the constraints

(1)

xl < x, < x _ i= l,m gi(X) j = l,,_

where G,_, GA and Gv are coefficients.Details of the method are given in Ref. [18].

(2)

In the following examples, the complete optinfiJation method was first used with a single objective function
coincident with rrrT and then with a multivariable function (_TTT, C_,, A_v).

From [17], the design of a stage of s small axial compressor (4 kg/s) with s high pressure ratio (/3"rT = 1.65)

is presented. The design variables are shown in Tab. 1, while Tab. 2 presents the numerical values of the
constraints. The optimization has been performed with a single variable objective funcion, the total-to-total

stage efficiency.
The initial stage efficiency value of 0.875 grows up to 0.927, with the absolute exit flow angle c_3 < 20 °.

The optimized results shown in Tab 1 have been obtained by imposing different limits to the stage (a3).
As shown, the design variables, ¢, ¢, AVR and a seem to be particularly sensitive to the a3 limits. The

optimization procedure has carried out a reduction of the relative Mach number (to which shock losses are
related) allowing for a remarkable reduction in the rotor losses (wRi = 0.114 and wRo = 0.0675).

Additional calculations have been performed by modifying the inlet flow algle (al), simulating in this way

the presence of an IGV or of a stage upstream. As an example, Tab. 3 shows the results obtained for

al =0;10;20 °.
In the previous examples it can be seen that, whereas 7?_rTincreases, the other significant design variables

l !

__,[(Ch,A,t,_are drammatically reduced. This points out the necessety to operate with mixed objective function..a {
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I A design optimization has been perfom, ed using a multivariable objective function with different values of l
I the coefficients G,I,GA and Gc, ranging from 0.0 to 1.0.

Table 4 shows tile initial values of r/TT, Ch and A,v, and the final ones after the optimization process. From
Tab. 4 it is evident that if G,_ = 0, the values of TIff are absolutely unsatisfactory, especially in the case where
GA and Gc are unity. For this reason, the efficiency should always be present in the objective function. In

the case where G,_ = 1 and Gc = 0, a high reduction results in the stall margin (especially if Ga = 1).

If G, t = GA = Gc = 1, the dominant effect of GA leads to a large increase in the specific area and also a
corresponding decrease in the starting value of efficiency (from 0.87 to 0.78).
Finally, the analysis of the optimization with the multivariable objective function has been performed varying

GA from 0 to 1, with Gc as parameter and G,_ = 1. The optimum efficiency, plotted in fig. 33, decreases
greatly with GA. The same trend, even if reduced in effects, is shown by Gc. Fig. 34 shows the stall margin

coefficient; the influence of GA is negligible for high values of Gc, while if Gc = 0 the increase in Ga is

positive for the stall margin.

The one dimensional design procedure at mean diameter is simple and is justified by the need for an immediate

definition of the global geometry of the machine and by the possibility of a preliminary design choice, but it

does not provides any informations about the hub-to-tip geometry.
The one-D procedure has then been extended in [15],[18], by coupling the numerical optimization strategies
with 2-D flow computation in the meridional plane (through-flow analysis) in order to have an optinfized

radial distribution of geometrical and aerodynamic quantities. This makes possible to optimi_,e the radial

distribution of the main geometrical and fluid dynamic parameters of the stage. Nevertheless, the method

solves non linear equations by an iterative technique and therefore their introduction in the optimization

procedure could be quite expensive as far as the computational time is considered due, also, to the high
number of iterations required by the mininfi_.ation.

Some difficulties is rappresented by the choice of the design variables. In a previous work [20], the authors
chose to deal with three radial sections - root,mean and tip - for a total of ten design variables for each single

row, considering fixed the geometry of the meridional section. The results obtained demonstrates the need
for a better definition of the design variables and, therefore of the row geometry. In ref. [18], the coefficients

of suitable polynomial that represents the 3-dimensional geometry of the row to be optimized were chosen as

design variables.
The design variables -13 for each row- are all geometric, as opposed to the procedure presented in the pre-

liminary design. This is due to the assumption that the optinfi_.ation criteria will be applied to a machine of

which the design is known, even if only in a preliminary way.
The evaluation of the objective function is obtained with a through-flow calculation by using a matrix method

[21]. The code, furthermore, pernfits the calculation of the annulus wall boundary layer with an integral type
solution [22] and the computation of the secondary deviation angle [23].

The general scheme is illustrated in fig. 35. Starting from initial data (Po,ToJ_T,rrl) and from the mean
diameter design variables (Xi), and working with a multivariabh objective function, the mean diameter

opthnum geometry is obtained. From here, by considering a law of radial geometry distribution (e. g. the
free vortex), the values of the the initial data of the through-flow calculation (Dh,Dt,n) and the new design

variables (polynomial coefficients ai) are obtained. Using the same algorithm of constrained minimization as

in the previous case, the procedure continues until the objective is reached.
The optimization problem uses only one objective function coincident with the stage efficiency.

The procedure has been applied to solve two kinds of problems. In the first one the process is used to redesign

an existing isolated transonic rotor. The one described in [24] is selected to verify the optimization process.
The initial geometrical data of the rotor, which coincide with the polinomial functions to be optimized, are
shown in figg. 36,37 and 38, respectively. The root chord is equal to 0.0388 m and is constant along the

blade span. The calculation is carried out for the design conditions: m = 96.18kg/s and n = 8870rpm. The

initial efficiency (original geometry) is equal to 0.897, while the value obtained at the end of the optimization

process is 0.943, greater than a 4 percent increase. Fig. 39 inustraes the objective function history during the

optimization. In figg. 36, 37 and 38 in addition to the initial radial distributions, the optinfized values are I
L .d
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Falso given; it is possible to note how the angle _31bhas undergone slight variation, with the nlaximunl variation

at tile root (4"). The angle _3ab shows the maximum shift with respect to the initial value at meadspan of the
blade (6°). This involves an increase of the blade curvature ill the central zone with slight reduction in the

root and tip regions. The solidity is reduced along nearly all the span, while at tip it change from 1.30 to 1.41.
The nlaximunl thickness/chord ratio has, at the end of the optinfization, a more uniform radial distribution.

Tile optimization operates in the sense of a reduction of the diffusion factor in the R < 0.4 region (fig. 40),
while in the upper zone D/ increases. For R < 0.6, the loss reduction is significant as shown in fig. 41; in

the tip region, where a great deal of the losses is due to the shock, although a reduction occurs (from 0.062
to 0.049), it appears to be more contained.

The second example is relative to the use of both procedures (pitchline and throughflow) in order to design
a stage working from the following informations: mass flow rate= 4kg/s; pressure ratio flTT = 1.60; Pot =

lO1.3kPa; Tm= 30OK. The initial optimization procedure is carried out with an objective function having
the following weights: G,j = 1, Gc = 0.0, GA = 0.0, and with a higher constraint for c_a of 10°.

The meridional section optimized with such a procedure is illustrated in fig. 42. The rotational speed is

39,500 rpm; optimized efficiency is equal to 0.91, the stall margin is Ch = 0.50 and the specific inlet area is
A,,, = 170.

The radial distribution of geometrical characteristics of the blade, from which the new design variables a are
obtained, was aquired by considering the free vortex law for the rotor and inlet section of the stator. For the

stator outlet section, the angle c_ab was chosen in a different way (fig. 43). Optinfization results are shown
and compared with starting values in the above mentioned figures.

As far as efficiency is concerned, it must be pointed out that the value calculated with pitchline analysis differs

from the initial finding obtained with the through-flow calculations. This latter, however, changes with the
second optimization process front 0.844 to 0.905, showing at the same time a sufficiently rapid increase.

The previous examples have shown that the optimization technique allows a design of turbomachinery compo-

nents with high degree of efficiency not only in one-dimensional approach, but also in an integrated analysis
in the meridional plane where an optimal radial distribution is obtained for geometrical and aerodynamic
quantities.

The same procedure has been applied by the authors to solve optimization problems for multistage axial flow
turbines ([25]).

3 Inverse wing section design

From a fluid dynanfic point of view the design of an airfoils looks for a geometry wich satisfy the equation
of motion, given some boundary conditions. Two kinds of methodology can be used: the first one imposes

some parameters (such as pressure, Mach number distribution, etc...) on the surfaces, while the second one

prescribes some global properties to the flow field, such as minimum drag, shock-free, minimum entropy
generation, etc... Both of them require some constraints in order to obtain a final airfoil shape with physical
meaning.

As far as a design technique of the first type is conceived, and in the light of the weil-posedness of the problem,
the distribution of the flow parametes must satisfy some constraints in order to have the solution of the inverse
problem for incompressible flow.

A methodology for solving inverse problem for airfoils by prescribing a pressure or velocity distribution is

presented in ref. [26]. The inverse technique there presented is based on conformal mapping (ref. [27], [28])

for inviscid incompressible flow and it has been extended to the compressible subsonic flow case by applying
the Karman-Tsien transformation. The assumption of inviscid flow is sufficiently approximated unless low

Reynolds numbers are considered, when the boundary layer thickness can change significantly the resulting
geometry. In this case the model is still valid, but the new surface is obtained by the displacement thickness
given by the imposed pressure distribution.

l'he method outlined in ref. [26], consists in mapping the phisical domain z(z, y), external to the closed line,

m a seminfinity strip on the computational domain ((_, _7) with _ > 0 and -7r/4 <_ _ _< 7r/4 (fig. 44).
Fhe airfoils is approximated by rectilinear elements, and the mapping function, valid for poligonal contours

L
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(ref. [26]), can be written in general form: t

Oz

0_ = f(M,i,a .... am, g .... C,,) m= 1,N (3)

where M is a scale factor, a,,, represents the abscissa in the computaional domain of the nodal points of the

elements, g,,, are function of ( and the position of the ruth element on the computational domain, and, finally,

C,,, depend on the change of the tangent to the airfoil along the element ruth as function of a .... The C,,,

values, which are known ill a direct analysis because the geometry is given, in the inverse design they rapresent

the unknowns of the problem.

In order to evaluate the C,,,, the complex potential is imposed on the central point of the N-2 elements, where

the lnodulus of the velocity is known. The resulting system with C,,_(m = 1, N + 1) unknowns is closed by

giving the velocity and incidence at infinity, by imposing the Kutta condition, two geometrical constraints at

the trailing edge in order to have a closed profile, and, finally, by imposing the tangent at leading edge to be

perpendicular to the chord. Moreover, if the compressible flow is considered, the Karman-Tsien relationship

is used to trasform the compressible distribution on a fictitious incompressible distributions.

Since the coefficient of system of equations are function of the position of nodal points in the computational

domain which are unknown, an iterative procedure is followed:

1. An initial guessed distribution of nodal points is assumed in the computational domain

2. The system equation is solved by Gauss-Siedel method

3. The equation 3 is integrated by assuming a value of M; the airfoil is obtained in the phisycal plane and

then M is scaled in order to have a computed chord equal to the prescribed one

4. If the position of the nodal points does not coincide with the previous values, the abscissa of these points

are updated

5. The iterative process restarts from point 2 by using the new values of Cm

The method has been applied to the design of airfoils for wich the incompressible solution is known. Fig. 45

shows the incompressible velocity distribution associated to the synnnetrical Karman-Treffez airfoil without

incidence, wich is prescribed to solve inverse problem.

The resulting airfoil is shown in fig. 46. Here different solutions, obtained with 16 (triangles), 32 (circles) and

64 (plus) elements, are compared with the exact one. For the 64 elements, tab. 5 shows the abscissa of nodal

points, the exact values YE and the computed Y/v coordinate, and the error with respect to the maximum

thickness.

A further example relative to the Karman-Treffez airfoil with camber and 5 ° incidence, with the prescibed

velocity distribution given in fig. 47, is shown in fig. 48.

The method, which seems to be very accurate in the incompressible case, has been extended to the design

problem by considering compressible subsonic flow. In this case also airfoils front catalogue have been selected
as test cases. For the NACA0012 airfoils with M_¢ = 0.72, a_¢ = 0°; and M_ = 0.5, a_¢ = 3 °, by prescribing

the pressure coefficient reported in figs. 49 and 50, respectively, the results obtained by using 32 elements are

shown in figs. 51,52.

Also for the compressible case the method seems to be very accurate, even when the Math number is very
close to one on the airfoils.
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ADJOINT OPERATOR APPROACH TO SHAPE DESIGN

FOR INTERNAL INCOMPRESSIBLE FLOWS
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New York, New York 10027 _/[/"

* David Taylor Research Center
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The problem of determining the profile of a channel or duct {given its upstream cross-section and

length) that provides the maximum static pressure rise is solved. Incompressible, laminar flow governed
by the steady-state Navier-Stokes equations is assumed. Recent advances in computational resources and
algorithms have made it possible to solve the "direct" problem of determining such a flow through a body
of known geometry. It is possible to obtain a set of "adjoint" equations, the solution to which permits the
calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher

pressure rise. The solution to the adjoint problem can be shown to represent an artificially constructed flow.

This interpretation provides a means to construct numerical solutions to the adjoint equations that do not

compromise the fully viscous nature of the problem. This paper addresses the algorithmic and computational
aspects of solving the adjoint equations. The form of these set of equations is similar but not identical to
the Navier-Stokes equations. In particular some issues related to boundary conditions and stability are
discussed. The use of numerical solvers is validated by solving the problem of optimum design of a plane

diffuser. The direct as well as the adjoint set of partial differential equations are discretized using a finite-
volume formulation. Each of the resulting set of algebraic equations are then solved numerically to obtain

a change in profile that will ensure an increase in the static pressure rise. Upon successive applications

of this procedure, an "optimum" profile is obtained beginning with an initial guess of a diffuser profile.

Such optimum diffuser profiles are obtained at Reynolds numbers varying from 10 to 2000. The optimality
condition, that the shear stress all along the wall must vanish for the optimum diffuser, is also recovered

from the analysis. It is shown that numerical solutions obtained in this fashion do satisfy the optimality
condition.

1. INTRODUCTION

A shape optimization problem is one in which an objective function defined on a domain and/or on its

boundary through the solution of a boundary value problem, is minimised {or maximized} with respect to
the variation of the domain. One problem of this nature is aWhat is the shape of a body {of given volume}

which has minimum drag when moved at constant speed in a viscous fluid?'. Pironneau {1973} addressed

this problem in Stokes flow for a three-dimensional unit-volume body. It was shown that at optimality the
normal derivative of the velocity is constant along the boundary of the body. In addition it was also shown

that the general shape of the body is similar to a prolate spheroid including a conical front end and rear ends

of angle 120 degrees. However, due to the lack of a numerical Stokes flow solver, a complete body profile
could not be obtained.

In a subsequent study, Pironneau {1974) derived the change in energy dissipation due to a small hump

on a body in uniform, steady, laminar flow. Using the above result in conjunction with variational methods

of optimal control _necessary optimality conditions" for four minimum-drag problems were obtained. These
conditions lead to a set of equations for an additional set of variables called the aco-state" or the "adjoint"

variables as opposed to the _direct" variables which are the unknown velocities. At the time Pironneau (1974}

was unable to carry out such a numerical integration. Instead, however using a boundary layer assumption

he was able to prove that a two-dimensional unit-area body with the smallest drag has a wedge-shaped
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front end. In a subsequent work Glowinski and Pironneau (1975} presented numerical computations of the

minimum-drag profile of a two-dimensional body in laminar flow, although with a Reynolds number large

enough (between 1,000 to 100,000) to permit a boundary layer approximation. The present study belongs

to this class in its theoretical approach with particular emphasis on computation of optimum profiles in the

absence of simplifying assumptions such as Stokes flow or thin boundary layers.

Another related class of optimum design problems is the question of determining the profile of a two-

dimensional body that will attain a desired surface pressure distribution. The body is assumed to be in

otherwise uniform flow. The designer usually has a better understanding of how the performance is related

to the the pressure distribution than the relationship between the profile and the performance. In recent

survey paper, Jameson {1988) suggests that the design problem be treated as a control problem in which

the control is the profile of the boundary. He also provides a comprehensive summary of the earlier related

studies in this direction. In a significant step towards addressing real flows Giles et. al. (1985) addressed

the problem of shape design for flows governed by the two-dimensional Euler equations. They write the

two-dimensional Euler equations in a streamline coordinate system and for fixed pressure distribution obtain

a Newton solution for the unknown surface coordinates.

In the present study optimum design of an internal flow component such as a diffuser in laminar flow

is considered. The problem of determining the profile of a plane diffuser (of say, given upstream width and

length} that provides the maximum static pressure rise is formulated using a variational method derived

from optimal control theory. Careful consideration of the numerical stability of the adjoint equations we

have been able to demonstrate the feasibility of optimum design in the context of laminar Navier-Stokes

equations without the additional boundary layer assumption.

2. STATEMENT OF THE PROBLEM

Consider a plane diffuser as shown in figure 1 of given upstream width W1 and given length L with

incompressible, laminar flow through it. The flow is governed by the incompressible, steady forms of the

Navier-Stokes and continuity equations. These are:

ui,i = 0

ujui,i = -P*,i + vui.LT" (1)

where p* = p/p. Here ui, p, p, and v are the velocity components, pressure, density and kinematic viscosity
respectively.

A no slip condition is imposed on the bounding wall. Dirichlet type boundary conditions axe assumed

at the entrance and exit, specifically, it is assumed that the streamwise velocity component at the entrance

and exit is specified and the transverse velocity component at the entrance and exit is assumed to be gero.

Symmetry conditions are assumed at the centerline. All velocities and lengths are scaled using the average

entrance velocity, V, and the diffuser entrance width W1 throughout the paper. Hence the Reynolds number

for the flow through the diffuser is defined as Re = (V • Wx)/v.

It is desired that the optimum diffuser profile be such as to maximise the value of this parameter for a

given upstream width and length. Since pressure may vary across the diffuser inlet and exit regions it was

decided to choose the change in the flow weighted integral {over the exit and inlet cross-sectional areas) of

the static pressure rise as the objective function. This quantity is given by:

J{FM) =[ p'uinids + [ p* u_r_ ds (2)
JF t Jr o

where ni is the i th component of the unit normal vector and FM is the portion of the diffuser wall that is

to be shaped. The goal then is to determine the diffuser profile that maximises the above function. The

normalized diffuser length, L/Wx, {henceforth simply called the length} is kept constant. The normalized

exit width W2/W1, {henceforth simply called the exit width} is left arbitrary, and its actual value for the

optimum diffuser is part of the solution to the problem and is determined along with the rest of the profile.

Since the only mechanism for total pressure drop in the diffuser is viscous dissipation, the optimum profile

is also the profile for which the viscous dissipation is a minimum.
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3. MATHEMATICAL FORMULATION

In this section, the variation of the objective function with respect to the variation of the boundary is

obtained by means of a perturbation type of analysis. This analysis follows from arguments not unlike those

used for optimum design in potential flow, in an earlier paper by _abuk and Modi (1990}.

First the variation of the solution of the direct problem due to boundary variation is obtained. Let p(s}

be an arbitrary function of arclength s, defined on FM, and let e be a positive number. Here FM is part of

the boundary that is to be shaped. The whole boundary, including the wall of the diffuser, the centerline

and the inlet and exit areas, is denoted by F and the domain enclosed by r is denoted by fl. Let each point

on FM be moved by cp(s) along the outer normal direction. The curve constructed in this way is denoted

by FM,_ and the new domain is denoted by fie as shown in figure 1. Let (u_,p _) be the solution of (1) in the

new domain I'll. Let {¢,, r} be defined as follows.

¢_ = lim e -1 [u_ - u_] 6 fl,
¢_0

r = lime -1 [p* - p'] • f].
t_0

Then (u_,/) can be written as:

u i = ui+e¢, (4)

p•=p* +elr

Since both (u[, p•) and (ui, p*) satisfy the Navier-Stokes equations, it can be shown that (¢_, _r) satisfy the

following set of equations:

¢,., = o (s)
uy¢i,y + ¢yui,i = -r.i + v¢i,ii

In a similar way it can be shown that on the fixed portions of the boundary

¢,=0 on(r-rM) (6)

since both u_ and ui satisfy the same boundary conditions.

The next step is to derive the conditions satisfied by ¢_ on FM. Consider a point P on FM, and a

corresponding point P_ on FM: such that P, lies on the outward normal _, as shown in figure 1. Assume

that ep(s) is positive. A Taylor's series expansion of u," about the point P, evaluated at _ = _]p,, along the

normal direction )_ is

(°u:/ +o(:)
¢lp. = u_]p + 'p k o. ] p (7)

= _']P + _¢']p + _P\ an] p + °(_=)

Since the velocities satisfy the no slip condition on FM, (i.e. u[]p, = Ui]p = 0);

¢_ = -P k an ] on FM. (8)

The first variation of the objective function is obtained next. The value of the objective function for the

new domain is given by,

at.,,) = +
The first variation of the objective function, _J, is defined by the relation

J(rM,) -- J(ru) = _sJ + o(,2). (10}

The first variation of the objective function can be shown to be:

6J = fr _u,n, dS + fr ,uinids ,
I o

(11)
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which is an integral expression over the entrance and exit boundaries. The next step is the transformation

of this integral from one that is over F z and Fo to one that is over F M. This is achieved through the

introduction of an adjoint variable problem. The inner product of the perturbation equations (5) and the

adjoint variables, (z,,r), integrated over the domain, and added to (11), and after using the divergence

theorem gives

6J = _r(ui - zi)nids + v ziOoC-_in- an j dS

+ _ (r¢ini- ¢iz, uin i - uizi¢in:.)ds + ff rzi,idA (12)

+//¢i {vz,,ii + uizi,i + uizi, i - r,i) dA .

The adjoint problem has to be defined such that the domain integrals in (15) vanish identically. The choice

of boundary conditions for these equations is made such that the only nonzero terms are those that axe

integrals over FM, the wall that is to be shaped. Let us define the following adjoint problem

zi,_ = 0 in fl

_zi,i : + %(z,,y + z:,,) - r,i = 0 in fl

gi = Ui on r.

(13)

Using (6), (8),and (13),equation (12) can be written as

6J = u ., P(S) \an/ \ an / dS "
(14)

In the above equation, the integration is over the boundary that is to be shaped. We can choose p(s) as:

p(,)= \ a. ] \ an] (is)

since that would ensure a positive change in the objective function, J, for a sufficiently small non-negative

weighting function, w(s). The function p(s) provides the boundary movement for a positive change in J.

To evaluate p(s) we need to solve the direct problem {i.e. Navier-Stokes equations) given by (1) and the

adjoint problem in z, given by (13). Note that the optimality condition is satisfied when either the shear

stress, au_/an, or the adjoint shear stress, azi/an, on the walls vanishes. The former criterion for optimum

diffuser profiles was also pointed out by Chang(1976).

It will be shown that the above formulation is equivalent to the earlier work of Glowinski and Pironneau

(1975}. By a change of variable, the adjoint problem can be transformed into the following form:

wi,i = 0 in 12

Pw_,yy + uiwl.y + wyui, _ - q,i = -uyui,i in fl

wi = 0 on F.

(16)

/

where 2w, = (zi-u,) and 2q = (r-p°+(l/2)uy-2uiw.i). The first variation of the objective function

then becomes
% l

6J= " _,,, P \ a,,,] \ a,,,+ a,, / (17)

The form of the adjoint variable problem defined by (16) is identical to that derived by Clowinski and

Pironneau (1975). Either one of the above adjoint problems can be solved numerically to obtain the next

shape. However upon examination of (16), it becomes evident that the wiuy,, term may lead to a numerically

unstable scheme. This is because the approach to steady state would be attained via an iterative %ime

evolution" like scheme that would then be of the form dw/dt = w{const} % -... This form is likely to result

in the exponential growth of the inevitable roundoff and truncation errors present at any iterative step. Also
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the presence of the inhomogeneous term, -uiui,j , in the above equations may lead to a linear growth of the

roundoff and truncation errors in the numerical computations. It is expected that these numerical difficulties

will be absent in the (zi, r) formulation of the adjoin! variable problem obtained in this paper and given by

(13). Hence this is the set of equations for which the algorithm for the numerical solution of the adjoin!

problem is developed.

As pointed out by Pironneau (1974), the adjoint equations do not seem to arise from any identifiable

physical phenomenon. It is however possible to demonstrate that the adjoint variable problem is associated

with a certain artificially constructed flow. A change of variables leads to the following form.

!

zi. _ = 0 in f/

z' ' ' =0 in f] {18)' - '(,,,+z,,,)-r,/'/2s, 3"] U s"

! I
Z i = tt i = --u i on F.

where z_ = -z,, u: -- -u_, and r' = -r. The first equation in (18) is identical to the continuity equation.

Compare the second equation in (18) with the Navier-Stokes equation written here in a slightly different

form.

Utq,S j - uy (ul,j + ui, i ) - _,i ----0 (19)

where 1_ = p* - (1/2)Uk 2. Observe that the problem in adjoint variable z_ is analogous to the the Navier-

Stokes problem in variable ul with the following exception: the convective velocities in the adjoint problem

are specified rendering the problem linear and are obtained from the direct problem. These convective

velocities, u_, are identical in magnitude but opposite in direction to those of the _direct" problem. The

boundary conditions for the adjoin! variables are z_ = -ul on F. Hence on the walls they imply a no

slip condition as in the direct problem. But at the inflow and outflow boundaries, _adjoint" flow is found

entering at the domain exit Fo and leaving at the domain entrance F/, thus suggesting an %djoint" flow in

the direction opposite to that of the actual flow.

The above interpretation of the adjoint variable problem will be useful in constructing a modified

problem whose solution will provide numerical values, albeit approximate, for the shear stress, Oui/On, and

the adjoint shear stress, Ozl/On, in (15). It is found that a shape optimization algorithm that obtains its

boundary movement from these approximate numerical solutions does indeed lead to diffuser shapes that

satisfy the optimality condition.

4. NUMERICAL ASPECTS

The boundary conditions chosen for the diffuser in the above formulation are of Dirichlet type. A

parallel flow of arbitrary distribution is assumed to exist at the diffuser entrance and exit. These boundary

conditions are clearly unrealistic both from a practical as well as computational standpoint. However this

is the only set of boundary conditions for which we have been able to derive the adjoint variable problem.

Given this limitation it was decided to verify whether the boundary movement suggested by (15) would

continue to provide a means to obtain optimum shapes even if some of the Dirichht conditions were replaced

with computationally suitable Neumann conditions.

Boundary Conditions for Navier.Stoke_ Equations

A parallel flow assumption at the upstream boundary implies Dirichlet boundary conditions for both

the velocity components. Instead a computationally desirable Neumann condition for the transverse velocity

component (Ou2/On = 0 on F_) is substituted while retaining a Dirichht condition for the streamwise com-

ponent. A parabolic profile corresponding to a fully developed laminar flow is specified for this component.

At the downstream boundary the parallel flow assumption is replaced with computationally desirable Neu-

mann conditions for both the velocity components (0u_/On = 0u2/0n = 0 on Fo). Similar approximations

will be made in the solution of the adjoint variable problem, keeping in mind the reversal of the role of

entrance and exit boundaries. At the solid wall, a boundary whose profile is to be determined, a no slip

condition is enforced. At the diffuser centerline the usual symmetry conditions are used since the flow is

assumed to be symmetric. At the entrance, exit, and wall, pressure has been extrapolated from the within

the domain by assuming that the second derivative of the pressure vanishes on the domain boundaa'y. At

the centerline symmetry condition is imposed for the pressure.
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Boundary Condition8 for Adjoint Equations

The role of entrance and exit are reversed for the adjoint equations. Therefore, at the exit boundary

a Dirichlet type condition is used only for the streamwise component of the co-state vector. Therefore we

set zx = ul on to, with ul taken from the solution of the Navier-Stokes equations. For the remaining

component z2 of the co-state vector at exit and for both components of the co-state vector at entrance,

Neumann conditions are employed instead. At the wall where all velocity components vanish and therefore,

z,, the co-state vector that is analogous to the velocity is set to zero. The adjoint variable, r °, is analogous

to the pressure term in the Navier-Stokes equations and hence no analytical boundary condition is available

for this variable. However, a computational boundary condition is implemented for this variable. The value

of r ° is extrapolated to the boundary from values at interior points assuming that the streamwise second

derivative vanishes at the boundary. This is done at all boundaries except at the centerline where a symmetry
condition is enforced.

5. NUMERICAL SOLVERS

Navier-Stokes Equations Solver

The primitive variable form of the incompressible steady Navier-Stokes equations is solved using an

artificial compressibility formulation due to Chorin(1967). In this formulation, the continuity equation

is modified using the time derivative of the pressure term. The steady-state solution of the Navier-Stokes

equations is then obtained as the large time solution of the unsteady momentum equations with the perturbed

divergence equation. These unsteady equations are:

p_ +/_2 u,,_ = 0
. (20)

u,._ + (uiu_) i = -p,_ + vu_,jj

where _ is analogous to the speed of sound. Note that these equations do not represent any transient physical

phenomenon and hence the transient solution has no physical meaning until steady state is attained. This

is indicated by the vanishing of the time derivative terms in the numerical solution.

The equations are normalized using the velocity and length scales V and WI defined earlier. In addition

time and pressure are normalized using the ratio WI/V and pV 2 respectively. The Reynolds number of the

flow through the diffuser is then given by Re = (V • WI)/v.

The equations are discretized in space using a finite volume formulation. The spatial discretization is

performed on the conservative form of the governing equations using a central difference scheme.

An explicit one-step multistage Runge-Kutta stepping scheme is used for integration in time. Since

transient behavior is not an issue and a larger time step is desirable, a four-stage Runge-Kutta scheme

with first order accuracy in time and a relatively high Courant-Friedrichs-Lewy (CFL) number has been

chosen. In order to improve the convergence rate, a local time step is computed for each cell at each elapsed

time level. These time steps have been estimated from a stability analysis of the algorithm. A fourth

order linear artificial dissipation term is introduced to damp the high-frequency oscillations associated with

the so-called sawtooth or plus-minus waves, i.e. waves associated with the shortest wavelengths. Implicit

residual smoothing is performed at each iteration to enhance the stability region of the technique. A more

complete discussion of the finite volume formulation, stability considerations, local time stepping, artificial

dissipation, implicit residual smoothing and the computational boundary conditions is provided in Cabuk,

Sung and Modi (1991}.

The computational grid is generated by solving a set of elliptic partial differential equations similar

to those suggested by Thompson et al. (1974). The set of algebraic equations thus obtained is solved by

successive over-relaxation (SOR). A typical grid is shown in figure 2. Grids generated by this method were

nearly orthogonal and the cell dimensions in each direction are approximately equal.

Ad]oint Equation Sol_er

The solution to the adjoint set of equations is obtained as the steady state solution to the following set

of equations:

r; =
1 (21)

z,,, = + uj( ,,j + - -- r;,
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where r* = r - zkzk,i. A nonlinear term ½ (zkzk},_ is introduced in the above equation to enhance the rate

of convergence. The utility of this term was established by means of preliminary calculations performed on

a straight duct geometry where an exact solution of the Navier-Stokes solution is known for fully developed

laminar flow.

The equations are normalized following a procedure similar to that utill,.ed for the Navier-Stokes equa-

tions. The nondimensional form of the above equation is identical to the equations above with the exception

of the first term on the right hand side of (21) where the kinematic viscosity, v, is replaced by the reciprocal

of the Reynolds number.

The numerical algorithm for the solution of the adjoint set of equations is essentially similar to the

algorithm for the Navier-Stokes equations. Some subtle but important differences do exist since the equations

solved are after all not the same. A discussion of the numerical algorithm is presented here, since this solution

to the best of our knowledge represents the first successful numerical solution of the adjoint set of equations

in the absence of either a thin boundary layer or a Stokes flow assumption. Spatial discretization is carried

out by centered-difference finite volume formulation. The term, u i (z_,i + zi,, ), on the right hand side of (21}

is not in a divergence form. In the treatment of this term the velocities, ui, which have already been obtained

by the Navier-Stokes solver, are treated as known quantities and are assumed constant inside each cell. Hence

the volume integral over the cell is performed by applying the divergence theorem to the remaining part of

this term, i.e. (zi.i + zi, i ).

The other terms in {21} are treated in the same fashion as the finite volume formulation of the Navier-

Stokes equations. A fourth order linear artificial dissipation term is introduced to damp high-frequency

oscillations. Time integration is carried out by a Runge-Kutta scheme with local time stepping. The

discrete form of the equations for the adjoint problem are:

dq (A6I + B6j + C6n)q = E (SI6_ + SJ6_ + SK6_.)q - eK(6_ + 6_ + 6_)qAv - (22)

where

A

0 _SIX ;92SIY _2SIZ ]

SIX U + (u_ - zl) SIX {ul - z,) SlY {ul - zl) SIZ |

SIY (u2 - za) SIX U + (u2 - z2) SIY (u2 - z=) SIZ l

SIZ (ua - z3) SIX (u3 - za) SlY U + (u3 - z3) SIZJ

B

0 _2SJX /]2SJY _2SJZ ]SJX V +(u,-z,)SJX (u,-zl)SJY (ul-z,)SJZ [

]SJY (u2 - z3} SJX V + {u2 - z_) SJY {u2 - z2)SJZ ]
[ SJZ (u3 - z3) SJX (u3 - z3) SJY V + (us - z3) SJZJ

C

0 _=SKX /92SKYSKX W + (ul - z,) SKX (u, - z,) SKY

[SKY (u2 - z3) SKX W + (u_- z2) SKY

l SKZ (u3 - z3) SKX (u3 - z3) SKY

p2SKZ ]
(_,- .i)SIiZ [
(u2-*2) SKZ [

W+ (u3-z3)SKZJ

and

with

[ 0010E= 0 1

0 0

q =

U = uISIX + u2SIY + u3SIZ,

V = uISJX+ u2SJY + u3SJZ,

W = uISKX + u2SKY + u3SKZ,

SI = SIA n + SIY 2 + SIZ 2,

SJ = SJX 2 + SJY 2 + SJZ _,

SK = SKA n + SKY 2 + SKZ _
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The volume of the cell is AV and (SIX, SIY, SIZ), (SJX, SJY, SJZ) and (SKX, SKY, SKZ) are the

surface-area vectors normal to the I, J and K cell surfaces, respectively. SI, SJ and SK are the squares

of the surface areas of I, J and K cell surfaces, respectively. The first, second and fourth order centered

differences are defined in the same fashion as in Sung(1987). The maximum local time step permitted for

stability is obtained by neglecting both the viscous and the artificial dissipation terms in the adjoint problem

and is given by

At <_ CFL ( A-_o ) (23)

The maximum eigenvalue, A0, in the above equation is estimated as

where

and

1[ j_o= _ O+ 02+ Bzc_

0 = lUl ÷ IS/X (_ - _)1÷ [s/Y (_ - zm)]÷ ]s/z (u3 - z3)]

+ IV[+ [SJX (ul- zl)[+[SJY(u2- z2)[+[SJZ(ua- za)[

+ IWl + tSKX (u, - z,) [+ [SKY (u2 - z2) l + ISKZ (_,a- Za)]

(24)

and

where

1[ ]_i= _ 01+ +_zsI

1[ _/ ]_j=_ Oj+ O_+_2sJ

_K = _ OK+ O_ + _SK

0_ =lVl + IsJx b'x - z,)l+ IsJY (_z - _z) l+ IsJz (_3 - z3) l

OK --IWl + ISKX (ux - z_)l+ ISKY (u2 - z2)[+ ISKZ (u3 - z3)[

Then the local time step has been computed from (23) with the maximum eigenvalue given by (25).

Profile Modification Algorithm

The principal steps of the optimization procedure are;

a) Choose an initial diffuser profile.

b) Generate a computational grid that conforms to the diffuser wall.

c) Obtain the steady state solution to the direct problem.

c _ = (IsIxl + IsIYI + ISlZl) _

÷(]sJXi + ]SJYI + ISJZ]) 2

+([SKXI + ISKYI + ISKZ[) 2.

The maximum eigenvalue of the resulting matrix system, including both the viscous terms and the artificial

dissipation term has been estimated as

Ao =V/A_ + (4Re-_SUaV + 16eK) _

+_//A_ + (4Re-ISJ/AV + 16eK) 2 (25)
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d} Obtain the steady state solution to the adjoint problem, by treating the required velocities as known

from step {c).

e} Compute aui/On and azl/On from the solutions in steps (c) and (d) respectively. Choose a non-negative

weighting function w(s} and hence obtain p(s) from (15}.

f) Move nodes on the diffuser wall to be profiled along the outer normal direction by p{s). The curve

connecting the nodes after this movement represents the new diffuser profile.

g) Go to step (b) unless the change in diffuser pressure rise obtained from step (c) is smaller than a desired

convergence parameter.

The iterative profile modification process is continued until the change in pressure rise is a small fraction

of the total pressure rise. An alternate method is to continue the process until the value of p{s) everywhere

along the wall is less than a critical value. In step (e), the weighting function, c#{s), is chosen to be

proportional to the arclength, s, along the diffuser wall measured from the diffuser entrance. This ensures

that the entrance width is maintained constant but the exit width may vaxy with the diffuser profile. When

shifting the diffuser wall to a new curve obtained from step {f) some care must be exercised since the curve

is being redefined using only a finite number of discretely spaced points. Checks axe performed on the

location of points on the new curve to ensure that boundary nodes do not conglomerate or coalesce after

their movement to a new position. Heuristic measures are also adopted to ensure that the appearance of

small amplitude wiggles in the new profile are damped to some extent so as to prevent the growth and built

up of numerical errors in the subsequent calculation

RESULTS AND DISCUSSION

Using the numerical solvers and the profile modification algorithm described above, optimum diffuser

profiles have been obtained for a single diffuser length L/W 1 = 3 at Reynolds numbers Re=50, 100, 200 and

500. A sound speed,//2, of 2 for the Navier-Stokes equations and 2.5 for the adjoint equations was used at

all Reynolds numbers. The calculation at Re=200 {henceforth called the reference case) has been examined

in particular detail to establish issues of convergence and accuracy.

The reference case was first examined for convergence of the profile modification algorithm. For this

purpose, a computational grid of 61 nodes in the z and 31 nodes in the y directions is employed, both for

the Navier-Stokes as well as the adjoint variable problem. Beginning with an initial shape the diffuser profile

was obtained after each application of the shape modification algorithm. The initial profile and some of the

intermediate profiles are shown in figure 3. The change in the profile shape is observed to be small between

the fourth and the ninth iteration and the change was found to be insignificant after nine iterations. Hence

the iterative process is stopped at the ninth iteration providing a reasonably converged optimum shape. The

question of computational accuracy of the solvers and hence the accuracy of the optimum profile is addressed

next.

The precise error due to a finite grid size on the optimum profile is difficult to determine since the actual

optimum curve is not known apriori, nor are any other calculations or experimental data available. However

one way to estimate the effects of the unavoidable truncation errors in a numerical calculation is to obtain

the optimum diffuser profile using progressively finer grids until the there is no change with grid sise. Once

again the reference case of Re=200 was examined for this purpose using grids of 31 by 16, 61 by 31 and

finally 121 by 61. The optimum profiles obtained using the three grids are shown in figure 4. The results

show that the difference between the shapes is negligibly small, providing some evidence that at these grids

the contribution of the truncation errors may not be significant. In view of this observation, a grid sise of

61 by 31 is found to be a suitable compromise between accuracy and computational work for the results

presented here.

In an earlier section we proposed that it was computationally desirable to replace some of the Dirichht-

type boundary conditions with Neumann-type conditions in both the Navier-Stokes and the adjoint equation

solvers. To justify at least partially the validity of solving the modified numerical problem we must verify

whether the optimum shapes obtained in this fashion do indeed satisfy the optimality condition, i.e. vanishing

shear stress on the wall, arising from the analysis.

In figure 5 the wall shear stress normalized by the corresponding value for a straight duct, is shown

for the optimum shape as well as at several intermediate stages of iteration. The wall shear stress for the

optimum shape is found to be vanishingly small for all but 10 percent of the wall at the upstream end.
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The shear stress distributions at intermediate iterations demonstrate a monotonous decrease towards the

optimum values. Closer examination of the shear stress for the optimum and intermediate shapes at other

Reynolds numbers confirm the same behavior as well. Hence the results obtained do provide some aposteriori

justification for the boundary condition approximations made in the modified numerical problem.

Further justification is sought by examining the behavior of the objective function for the reference

diffuser. The velocity averaged static pressure rise (i.e. the objective function defined by equation 2) is

shown in figure 6 at successive iterations of the shape modification process. The objective function for this

modified numerical problem is indeed found to increase with each application of the boundary movement

suggested by equation {15). The area averaged static pressure rise through the reference diffuser also increases

with with shape modification as seen in figure 6. These observations are found to be valid at calculations at

other Reynolds numbers in the present study as well.

In addition to the reference case, calculation of the optimum diffuser profile was carried out at three

other Reynolds numbers, Re= 50, 100 and 500. In figure 7, these profiles are shown for a diffuser of L/WI = 3

for a grid of 61 by 31. At lower Reynolds numbers the optimum diffuser profile permits a larger exit area to

inlet area ratio as one would expect higher viscous effects to support greater diffusion without separation.

The angle at which the diffuser profile departs at the upstream corner is difficult to compute accurately since

the flow in that corner may not be accurately resolved. Nevertheless, the approximate angle decreases from

56 degrees to 19 degrees as the Reynolds number increases from 50 to 500. For the Reynolds number range

in which numerical solutions are presented here, further refinement of the grid did not lead to any significant

change in the optimum profile. This was not found to be true of computations at Reynolds numbers higher

than 500.

To evaluate the performance of the optimum diffuser, a pressure recovery coefficient, Cp, is defined,

which is the ratio of the static pressure rise of the optimum diffuser to the static pressure rise for an ideal

diffuser {in potential flow} with the same Wz/WI ratio as the optimum diffuser. Note that the denominator

of this ratio is independent of the actual profile between the upstream and downstream cross-sections of the

diffuser. Using Cp as a parameter, the performance of the optimum diffuser is now compared with that of

a straight walled diffuser with the same W2/W1 ratio at several different Reynolds numbers in the laminar

regime. The Cp values of straight diffusers are found numerically using the Navier-Stokes solver on the

straight walled geometry without any shape modification steps. As seen from figure 8, the Cp values for the

optimum diffusers are always higher than those for straight diffusers.

In conclusion, the feasibility of shape optimization for incompressible laminar flows has been demon-

strated. This approach may also be adopted to other domain optimization problems where the performance

depends on the geometry of the component, and flow is governed by the viscous laminar flow {either com-

pressibleor incompressible} equations. Itmay also be possible to consider variations of the objectivefunctions

depending upon the design criterionof interest.All computational results presented in this paper were car-

ried out either on an Intel 30386 33MHz microprocessor based machine or on a microVAX II workstation.

The CPU times for these calculations are of the order of several hours. The theoretical framework as well as

numerical solution code for the extension of the method to three-dimensional flow now exist and such flows

are the subject of study by the authors at present.

The research reported in this paper is based upon work supported by the National Science Foundation

under Grant No. CBT-87-10561.
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Figure (1) Schematic diagram of a plane diffuser. Flow enters at upstream boundary £I and

exits at the downstream boundary £o. The wall to be shaped is rM and symmetry
line is £c.
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Figure(2) A typicalcomputationalgridfora planediffuserobtainedusing the gridgeneration

program. Grid sizeis61 by 31. This was the domain for the optimum diffuserat

Re=200 and L/WI = 3.
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Figure (3) Profiles of a reference diffuser at successive iterations. The grid size is 61 by 31. O

: Initial shape, Q : First iteration, A : Fourth iteration, • : Ninth iteration.
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Figure (4) Effect of grid size on optimum profile of a reference diffuser. O : 31 by 16, FI : 61
by 31, * : 121 by 61.
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Figure (5) Normalized wall shear stress at successive iterations for a reference diffuser. The

grid size is 61 by 31. C) : Starting shape, _ : First iteration, A : Fourth iteration, *

: Ninth iteration.
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Figure (6) Static pressure rise through the reference diffuser at successive iterations. The grid

size is 61 by 31. O : Area-averaged pressure rise, A : Velocity-averaged pressure

rise.
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Figure (7) Optimum diffuser profiles at different Reynolds numbers for L/W1 = 3. Grid size is

61 by 31. O : Re=50, _ : Re=100, A : Re=200, o : Re=500.
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Abstract

A fast, emcient and user-_endly inverse design system for three-dimensional nacelles has been de-

veloped. The system is a product of a two-dimensional inverse design method originally developed at

NASA Langley Research Center (LaRC) and the CFL3D analysis code which was also developed at

NASA LaRC and modified at GEAE for nacelle analysis. The design system uses a predictor/corrector

design approach in which an analysis code is used to calculate the flow field for an initial geometry,

the geometry is then modified based on the difference between the calculated and target pressures. A

detailed discussion of the design method, the process of linking it to the modified CFL3D solver and

its extension to three-dimensions is presented in this paper. This is followed by a number of examples

of the use of the design system for the design of both axisymmetric and three-dimensional nacelles.

L J
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[Introduction

The purpose of a nacelle, on a high bypass ratio turbofan engine is to supply tile airflow required

by the engine efficiently with low distortion levels, provide a low drag aerodynamic enclosure for the

engine hardware, and expand the exhaust gasses from the engine through an exhaust system with

max_imum efficiency. The nacelle has three major components, the inlet, the fan cowl and the exhausl

system (Figure 1). The nacelle's crown, side and keel cuts are also shown in Figure 1. In this paper

a three-dimensional inverse design technique is presented for the aerodynamic design of the fan cowl

of the nacelle. In this inverse design method, tile designer analyzes an inilial geometry and then

interactively modifies the resulting pressure distribution to remove any undesirable features. The

method then determines the nacelle geometry that will give the desired pressure distribution.

A diverse variety of inverse methods have been developed for airfoils and wing design. An overview

of these methods can be found in review papers by Slooff [1] and Dulikravich [2]. Many of these

methods, however, are often only suited to specific applications and are not easily extendible to meet

the requirements of nacelle design. Examples of this are the tlodograph method of Bauer, Garabedian

and Korn [3]. which is limited to two-dimensional airfoil and turbomachiimry flows and the fictitious

gas method [4] which is only suitable for the design of transonic shock free flows.

Unfortunately, modern high bypass ratio turbofan engine nacelles are far from axisymmetric and to

obtain a meaningful solution a fully three-dimensional analysis has to be performed. There are also

geometric constraints imposed on the design process that the inverse method must be able to handle.

In an aero engine, the fan nozzle acts as tile throttle controlling the engine operating characteristics:

therefore tile fan nozzle area, and thus the radius of the trailing edge of the fan cowl, must remain

fixed in the design process. Similar constraints apply to the nacelle inlet area, so that the radius of

the leading edge of the fan cowl must also remain fixed during the design process. The aerodynamic

designer, therefore has to design a surface between two fixed endpoints. In reality, the situation

can be further constrained. The trend in the aero engine industry has been to produce derivative

families of engines. When designing the nacelle of a derivative engine there can be large economic

incentives to keep as much of the hardware common between the members of an engine family. This is

especially true for complex components that have high initial tooling costs such as the inlet anti-icing

system and the thrust reverser. In these cases, the aerodynamic designer may be limited to changes

in the geometry between about 5% and 60% of the fan cowl length. The new surface having to blend

smoothly with the existing hardware.

In this paper an inverse design technique is described that meets the needs of the fan cowl designer

in that it is three-dimensional and allows either all or a portion of the fan cowl to be modified. The

method incorporates the CFL3D [5] analysis code and the inverse design technique of Campbell and

Smith [6,7].

Aerodynamic Code

CFL3D was developed by the Computational Fluid Dynamics Laboratory at NASA Langley Research

Center [5] and modified at General Electric Aircraft Engines (GEAE) for nacelle analysis [8]. The

modified code solves the Euler equations by using a finite volume discretization method. Solutions are

advanced in time with a spacially-split three-factor approximate factorization method in diagonalized

form. The flux quantities are represented using the flux-vector-splitting approach of Van-Leer with

hird-order spacial accuracy. Special features include multigrid convergence acceleration and the].3
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bility to handle multiple grid blocks with a variety of block interfaces and boundary conditions.

The Euler equations express the conservation of mass, momentum, and energy for an inviscid, non-

conducting ga_ in the absence of external forces. The conservation form of the equations in generalized
coordinates is:

=0
where

1

1
H=-j

J
pw

e

pU

pUu + _P

pUv + _P
pUw + _P

(e + P)U

pV

pVu + 7h:P

pVv + _?_P

pVw + _7_P

(e + P)V

pW

pWu + (_P

pWv + (uP

pWw + _P

+ P)W

The equations are non-dimensionalized in terms of the reference density p_ and the speed of sound

aoo. The cartesian velocity components are u,v,w in the x,y and z cartesian directions. The pressure,

P, is related to the conserved variables, Q, through the ideal gas law:

p- ('_-l)[e (u2+v 2

where 3, is the ratio of specific heats (7 = 1.4). U, V, and W are the contavariant velocity components

in the (, 7/, and _ directions respectively. J is the Jacobian of the transformation and e represents the

internal energy.

The boundary conditions used consist of far-field, solid surface and fan face boundary conditions. The

farfield boundary condition is based on Riemann invariants for a one-dimensional flow. On the solid

surface of the nacelle and spinner, the velocity normal to the wall is set to zero and a slip condition

is imposed. In order to simulate the exhaust plume, the fan cowl is extended downstream of the

fan nozzle as a solid body. A full description of how this is achieved is given in reference 8. The

intake flow rate is controlled by setting the fan face boundary condition (static pressure). The fan

face static pressure required for a given flow rate is calculated using a one-dimensional flow equation.

Since the pressure does not account for the three-dimensional effects and loss in the flowfield it is

readjusted based on results from the one dimensional analysis. A symmetry boundary condition is[
lso placed at the nacelles's vertical plane of symmetry when cross-wind or yaw requirements are noU
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mposed. For these cases a 180 degree grid is used for the analysis. For flow conditions involving]

cross-wind or yaw, a full 360 degree grid is used with a continuous boundary condition specified at the

vertical plane of geometric symmetry (Figure 2). An option is also available to analyze axisymmetric

configurations that only requires one computational cell in the circumferential direction. This code

has been validated against test data for a large range of nacelle designs and operating conditions. For

further details on the modified version of CFL3D for three-dimensional nacelle analysis see reference
8.

Design Method

Tile predictor/corrector approach used by this design method is illustrated in Figure 3. A target

pressure distribution is specified by the designer that has desirable characteristics such as no shocks,

no steep diffusions or favorable pressure gradients for natural laminar flow. Tile aerodynamic analysis

code (CFL3D) is used to determine the pressure distribution on an initial geometry. The nacelle

surface pressure coefficients are compared with the target pressure distributions in the design module.

The initial geometry is then modified based on the pressure differences. The grid is then perturbed

and the new geometry is analyzed in the analysis code to determine its pressure distribution. This

process continues until the convergence criteria specified by the designer is reached.

Design Algorithm

The design method, described in reference 6, uses two design algorithms, one for subsonic flow and

the other for supersonic flow. The supersonic algorithm is blended with the subsonic algorithm to

design regions of transonic flow. Both algorithms assume that ACp is proportional to the change in
geometry.

The subsonic algorithm is based on the assumption that changes in curvature are directly proportional

to changes in pressure coeffÉcient. The relationship used to express the change in curvature as a

function of change in pressure coefficient is:

AC = ACpA(1 + C2) B

where

C is the curvature

Cp is the pressure coefficient

A = +1 for the upper surface, -1 for the lower surface

B = input constant ranging from 0.0 to 0.5

The derivation of this equation is given in reference [6]. The change in curvature is converted to a

change in r" by using the formula

Ar" = AC [I + (r')2] Ls

where

r is the surface radius

r _ is the surface slope
r" is the second derivative of surface radius

k j



409

Third International Conference on Inverse Design Concepts and Optimization in Engineenng Sciences

(ICIDES-IIIt, Editor: G.S. Dulikravich. Washington D.C., October 23-25, 1991

_his that the in the surface slope are small.equation changesassumes

The supersonic algorithm is based on supersonic thin airfoil theory. Based on relations between the

pressure coefficients and surface slope the expression

Ar' = KACp

Differentiating this expression gives tile following relationship between r" andcan be derived [6].

AC v.

At"= h "d(ACp)
dz

Tile value for the constant K is 0.05 and is used to under relax the changes in the geometry during

each design iteration.

Using these equations the required change in r" is calculated at each point along the fan cowl. To

change the magnitude of r" at point I without changing r" at other locations, points I+l through N

are rotated through a given angle. Figure 4 shows the result of this process.

Closure of the Design Range

It is clear from Figure 4 that in general tile last point in the design range will not remain fixed and

therefore a method of closing the geometry is required. The method suggested in reference 6 was to

rotate the newly designed section about the most forward point of the design range so that tile end of

the design range closes. This process, however, leaves a surface slope discontinuity at the beginning

of the design range. If the beginning of the design range was the nacelle's leading edge, then an

option would be to blend a new leading edge geometry into the modified nacelle. This was felt to

be undesirable as a nacelle's off-design (takeoff, climb etc.) performance is critically dependent on

the leading edge shape. An alternative would have been to smooth the geometry in the region of the

slope discontinuity but there is no guarantee that the resulting pressure distribution in this region

will be smooth.

A solution of this problem was found in a paper by Lin etal. [9] where they advocate modifying the

target pressure distribution to ensure that the end point of the design range remains fixed. In this

method a sine function is added to the target pressure with the maximum modification at the center

of the design region, and zero at the ends (Figure 5). The amplitude of the sine function is iteratively

determined by using the secant method. Figure 6 shows the logic used to close the geometry by

modifying the target pressure distribution. This process is performed at each design update and it

has been found that this scheme normally converges in three iterations.

Coupling the Design to the Analysis Code

For ease of use, the design algorithm has been incorporated as a module in a modified version of

the CFL3D analysis code. The information that is passed from the design module to CFL3D is an

updated computational grid that reflects the changes in surface geometry calculated by the design

algorithm. Rather than regridding the complete configuration every design calculation, a grid per-

turbation scheme has been developed. In this scheme the grid lines along the fan cowl surface are

moved radially to account for the change in surface geometry. This is repeated for the grid line away

rom the nacelle surface but the change in radius is reduced linearly with the local radius, so that the]uter boundary does not move.
_J
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Fhe normal procedure for designing a nacelle is that the designer analyzes a first guess at the nacellel
geometry using the CFL3D code. An interactive graphic program has been written that presents

the designer with the nacelle surface Mach number distribution and allows the designer to specify

the portion of the surface to be modified. The designer can interactively alter the Mach number

distribution in order to obtain the desired characteristics for the target pressure distribution. CFL3D

is then run with the design option active. The converged solution from the initial nacelle geometry can

be used as the starting solution. The difference between this solution and tile required target pressure

distribution is used by the design module to calculate a new geometry. The grid is perturbed and

the geometry is re-analyzed. Numerical studies have shown that after each pass through the design

module the analysis does not have to be full)' converged. It has been found that only 40 iterations of

CFL3D are needed, where as, 250 iterations would be required for full convergence. About 20 passes

through the design calculation are needed to obtain a pressure distribution that matches the modified

target pressure distribution to engineering accuracy for a typical design. Convergence is slowed if the

original geometry has large supersonic patches with strong shocks or if the designer is making large

changes to the pressure distribution.

Axisymmetric Results

Because the design method does not account for three-dimensional (circumferential) effects, the first

test cases that were run were purely axisymmetric. The results of two of these runs are presented in

Figures 7 and 8. The design range for both of these cases is the complete length of the fan cowl. In

the first test case the the inverse design method was used to eliminate a shock on the fan cowl as

shown in Figure 7a. A comparison of the final pressure distribution and the initial and modified target

pressure distributions are shown in Figure 7b. The final pressure distribution matches the modified

target distribution almost perfectly. As shown, the difference between the initial and modified target

pressure distributions, is quite small. Figure 7c shows a comparison of the initial and final geometry.

The same geometry is used in the second test case (Figure 8) but larger changes are being made to the

pressure distribution. In this case a significant change in the target pressure distribution is required

to close the geometry but the characteristics of the final pressure distribution are still similar to the

designers intent. Figure 8b shows that the final pressure distribution matches the modified target

distribution quite well. At the trailing edge, however, there is a small difference because the geometry

downstream of trailing edge is fixed during the design, resulting in a discontinuity in surface slope

and curvature. This highlights the problem of how one specifies a pressure distribution that ensures

that the geometry at the end points of the design range match and the pressure distribution remains
smooth.

Three-Dimensional Extension

Having shown that the axisymmetric inverse design code works well, the next stage was to extend

it to the design of three-dimensional nacelles. In the axisymmetric version only one radial cut is

considered. For three-dimensional nacelles, the radius varies from crown to keel and so a number of

circumferential cuts must be taken into account during the design process.

Three options were considered for the three-dimensional version. The first option requires the designer

,t° specify the target pressure distribution at each circumferential cut of the grid (typically 13 cuts.

[are used on a 180-degree sector). The problem with this approach is that there is no guarantee of a_J
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_.mooth geometry in the circumferential direction (Figure 9). Thus, the designer would have to know
how to distribute the pressure distribution circumferentially to ensure a smooth geometry'. It was fell

that this would be diMcult to achieve, and therefore tills option was rejected.

The second option requires the designer to specie" the target pressure distribution on only' three cuts

(crown, side and keel). The design procedure would be used on only these cuts and the remaining

cuts would be designed by, parabolically interpolating the new radii circumferentially. The problem

with this method is that the original cross-sectional geometric shape of the nacelle is not preserved

(luring the design. As shown in Figure 10, the elliptic shape of the original nacelle cross-section is

altered to a parabola by the interpolation scheme.

Ttle third option considered was very similar to the second one. With this option the designer specifies

the target pressure distribution on the crown, side and keel cuts but the remaining cuts are designed

by parabolically interpolating the changes in the radii from these three cuts (Figure 11). With this

approach the essence of the original cross-sectional shape of the nacelle is preserved and some degree

of smoothness in the circumferential direction is ensured.

The third option was chosen to be used in the three-dimensional version of the inverse design method.

As stated before, the designer specifies the target pressure distribution on the crown, side and keel

cuts, of the nacelle. At each design iteration all three cuts are redesigned using the same design method

as had been used in the axisymmetric version. No attempt has been made to extend the relationship

between change in Cp and change in geometry to account for three-dimensional (circumferential)

effects. The changes in geometry from the three cuts are then interpolated for the other radial cuts

and the grid is perturbed in a similar manner to the axisymmetric version. Experimentation has

shown that although changes made in the crown cut, for instance, do effect the flow at the side cut

and to a lesser extent the keel cut, these effects do not cause instahilities in the design scheme.

Three-Dimensional Results

The results for a three-dimensional test case are shown in Figures 12 through 14. In this case the

design range started at the nacelle leading edge and ended 10 inches upstream of the nacelle trailing

edge. The Mach number distributions along the crown, side and keel cuts of the original nacelle as

well as the desired target Mach number distribution are shown in Figure 12. Figure 13 shows the

Mach number distribution achieved after 40 design iterations and the initial and final target Mach

number distributions. The resulting modifications to the geometry is shown in Figure 14. It should

be noted that the vertical scale has been expanded so that the change in geometry can be clearly

seen.

Summary

A predictor corrector design method originally developed by Campbell and Smith has been coupled to

a modified version of the CFL3D analysis code and extended to allow the design of three-dimensional

nacelles. A designer can interactively modify the Mach number distribution of the crown, side and

keel cuts of a fan cowl and the required geometry is automatically calculated. The method is capable

of designing any local region of the fan cowl, the remainder being fixed, although further work is

required in determining how to specify the pressure distribution so that both the geometry and

ressure distribution are smooth at the end points of the design range. J
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FFurther work is being pursued to try' and reduce the computational time required by' the method. The]

aim is to reduce the cost of an inverse design calculation from the present value of about four times

that of an analysis calculation to about twice. Future work oil the choice of an optimum pressure

distribution that meets both geometric constraints and off-design performance criteria is also being

considered.
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Aerodynamic compatibility of aircraft/inlet/engine systems is a difficult design problem for

aircraft that must operate in many different flight regimes. Take-off, subsonic cruise, supersonic

cruise, transonic maneuvering and high altitude loiter each place different constraints on inlet

design. Vortex generators, small wing-like sections mounted on the inside surfaces of the inlet
duct, are used to control flow separation and engine face distortion. This paper attempts to

define the design of vortex generator installations in an inlet as a problem addressable by

numerical optimization techniques. A performance parameter is suggested to account for both
inlet distortion and total pressure loss at a series of design flight conditions. The resulting

optimization problem is difficult since some of the design parameters take on integer values. If

numerical procedures could be used to reduce multi-million dollar development test programs to
a small set of verification tests, numerical optimization could have a significant impact on both

cost and elapsed time to design new aircraft.

Inlet flow distortion is one of the most troublesome and least understood problems for

designers of modern inlet engine systems (Refs. 1 and 2). One issue is that there are numerous
sources of flow field distortion that are ingested by the inlet or are generated within the inlet duct

itself. Among these sources are (a) flow separation at the cowl lip during maneuvering flight, (b)

flow separation on compression surfaces due to shock-wave boundary layer interactions,

(c) spillage of fuselage boundary layer into the inlet duct, (d) ingestion of aircraft vortices and
wakes emanating from upstream disturbances, and (e) secondary flow and flow separation within

the inlet duct itself. Most developing aircraft have experienced one or more of these types of

problems, particularly at high Mach numbers and/or extreme maneuver conditions, such that flow

distortion at the engine face exceeded allowable limits. Such compatibility problems were
encountered in the early versions of the B70, the F-111, the F-14, the MIG-25, the Tornado and

the Airbus A300, to name a few examples.

The effect of inlet distortion, be it pressure or temperature, steady or transient, is that the

power available is reduced along the engine compressor surge margin (i.e. the difference
between the operating line and the surge line). Aeromechanical effects such as rotor-blade

forced response and distortion effects on flutter boundaries have received less attention, so that a

L
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consensus on importance and state-of-the-art methodology has yet to emerge. Stabilfly
characteristics of current high performance turbofan engines are adversely affected by both
spatial as well as temporal distortion.

PROBLEM DEFINITION

One of the most commonly used methods to control local boundary layer separation is with

the placement of vortex generators upstream of the problem area. Vortex generators in use today

are small wing sections mounted on the inside surface of the inlet duct or wing surface, inclined

at an angle to the oncoming flow to generate a shed vortex. The generators are usually sized to
local boundary layer height to allow for the best interaction between the shed vortex and

boundary layer itself, and are usually place in groups of two or more upstream of the problem

area. The principle of boundary layer control by vortex generators relies on induced mixing
between the external or core stream and the boundary layer region. This mixing is promoted by

vortices trailing longitudinally over the duct surface adjacent to the edge of the boundary layer.

Fluid particles with high momentum in the streamwise direction are swept along helical paths

toward the duct surface to energize, and to some extent to replace, the low momentum boundary
layer flow. This is a continuous process that provides a source of re-energization to counter the

natural boundary layer growth caused by friction, adverse pressure gradients, and low energy
secondary flow accumulation.

There are two basic configurations of vortex generators. In one configuration, all the vortex

generators are inclined at the same angle with respect to the oncoming flow direction. These are
called co-rotating configurations because the shed vortices rotate in the same direction. In the

other configuration, the vortex generators are grouped in pairs one at a positive angle of attack
and one at a negative angle of attack, such that pairs of counter-rotating shed vortices are

generated. Co-rotating vortex generators are very effective in reducing flow separation if the

generators are properly selected and located. The main advantage of co-rotating type vortex

generators is their downstream effectiveness resulting in more effective usage of the vortex
energy within the affected boundary layer. This type of vortex generator has a few special
advantages when used within S-duct inlet configurations, namely: (1) the induced vortices will

remain close to the wall resulting in a "cleaner" core flow, and (2) the induced vortices will

counteract the natural and often strong secondary flow which develops.

Counter-rotating, equal strength vortex generators have been used in a number of aircraft

inlet ducts, such as the F/A-18 and the center inlet duct on the production 727 aircraft. This type
of vortex generator is very effective in reducing flow separation if the vortex generators are

placed slightly upstream of the region of separation. The disadvantages of these types of
generators, as compared to co-rotating generators, are: (1) the induced vortices tend to lift off

the duct surface, thus reducing their effectiveness, (2) higher loss in inlet total pressure recovery,
and (3) higher total pressure distortion at the compressor face.

It was not until the confirmation test for the refanned JT3D engine on the 727 center duct

inlet in 1973 by Kaldschmidt, Syltebo, and Ting, Ref. 3, that an attempt was made to use vortex

generators to restructure the development of secondary flow in order to improve the engine face
distortion level. Thus, a very important shift in strategy on the use of vortex generators had

occurred. The perspective had moved from a local two-dimensional boundary layer approach

aimed at eliminating local flow separation to a global three-dimensional vortex-secondary flow
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interaction concept, where the design goal was now to control the development of three- -'

dimensional secondary flow itself, by introducing discrete sources of vorticity at selected locations

throughout the inlet duct.

In order to accomplish this new objective for internal flow control, the design strategy must

shift from an experimental based methodology to an approach based on analysis. This paper
represents one in a series of studies on the design issues associated with inlet-engine

compatibility problems, and in particular, engine face distortion and its control. These studies

center on the development of CFD tools and techniques which look promising within an

analysis-design environment, and the application of these new analysis approaches to understand

and control inlet-engine distortion. The first paper in this series by Anderson (Ref. 4) deals with

the aerodynamic characteristics of vortex interaction within the F/A-18 inlet duct, where the
vortex interaction arises as a result of a vortex ingestion. Later studies will involve the effect of

vortex ingestion on the engine face flow field itself. In the second paper in this series, by

Anderson and Levy (Ref. 5), it was demonstrated that an installation of co-rotating vortex

generators could be constructed to tailor the development of secondary flow to reduce engine

face distortion. Of importance is the conclusion that there exists an optimum axial location for

the installation of co-rotating vortex generators, and within this configuration there exists a

maximum spacing of generators above which the engine face distortion .rapidly increases. This

study also showed that the vortex strength, generator scale, and secondary flow field structure
have a complicated and interrelated influence on the engine face distortion, over and above the

influence of the initial arrangement of generators. These are the only three-dimensional

calculations of inlets with vortex generators known to the authors.

ANALYSIS

With these computational tools in place the present paper attempts to pose the design of

low distortion inlets through the use of vortex generators as a numerical optimization problem.

To be a valid optimization problem a quantitative measure of goodness must be defined.

Although inlet distortion is caused in the inlet, its effect is meaningful in the response of the

engine to the distorted airflow. Inlet distortion can reduce surge margin and limit aircraft

maneuverability. Aircraft and engine manufacturers have developed measures of inlet

distortions that characterize the inlet flow, although they must be recalibrated for each airframe,
engine and flight profile.

It is impractical to measure anything at the engine face when the engine is installed and

operating; consequently, the engine and inlet designers agreed upon an Aerodynamic Interface

Plane which is forward of the compressor face but sufficiently close to the engine face to have a

similar flow field. Current U.S. practice uses forty or forty-eight transducer probes arranged in

eight rakes with five or six rings. The radius of each ring is set such that all probes are at the
centroid of equal areas. All distortion descriptors, whether they quantify steady state or transient

distortion conditions, are always calculated relative to the standard rake located at the

Aerodynamic Interface Plane.

The most widespread quantitative distortion descriptor available in the literature, because

of its use in the earliest measurements on inlet ducts in the late 1950's, is simply:

DT = FPtmax -- Ptmin] / Ptav e (i)

L J
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where Ptma x is the maximum rake total pressure, Ptmi n is the minimum rake total pressure, and

Ptav e is the area weighted average rake total pressure. In experimental data reduction, it is

assumed that both the static pressure and temperature are constant and steady across the
Aerodynamic Interface Plane; thus both the velocity and Mach number can be considered.

functions only of total pressure and the distribution of this quantity is the only measurement that

needs to be made. This parameter is always useful to determine for comparison purposes and to

describe the 'general health' of inlet ducts irrespective of the type of power plant that may be
used.

The effect of circumferential distortion on compressor surge margin is essentially to drop

the maximum pressure ratio of a constant corrected speed line. One descriptor for
circumferential distortion is from Rolls Royce and is defined as

DCtheta = [Ptave -- Ptmin] / qave (2)

where Ptav e and qave are the average total and dynamic pressure at the engine face or

aerodynamic interface plane and Ptml n is the minimum total pressure in any section of extent
theta. Significant theta values can vary with engine design and commonly are 60 ° , 90 ° and 120 ° .

For bypass engines, a circumferential distortion descriptor DCtheta_GG i_ often used, where GG
indicates that the index is taken over the area of the gas generator.

More advanced distortion descriptors, introduced in the late 1960's and 1970's, take into

account the Dt distortion of each ring of total pressure measurements. Thus, the radial distortion

Dt r is defined as

Dtr = [[Ptmax -- Ptave] / Ptmax] ring (3)

where Ptav e is the average total pressure for a given ring radius and Ptma x is the maximum local

ring total pressure. The circumferential distortion Dtthet a is defined as:

Dttheta : [[Ptave - Ptmin] / Ptave] ring (4)

where Ptmi n is the lowest total pressure in any theta segment, usually 60 ° or 180 ° of arc for a

given ring radius having an average ring total pressure Ptav e.

Whatever distortion parameter is selected, there are a large number of design parameters

to be optimized. Figures 1, 2 and 3 define many of the geometric parameters which may vary

from vortex generator to vortex generator in a single inlet, although in this study all vortex

generators in each inlet were of the same size, shape and spacing. The effects of several
parameters on inlet distortion are now presented. Note in the following examples that the

parameters are highly coupled, i.e. the Hessian matrix is not well approximated as a diagonal
matrix.

Vortex Generator Design Parameters

The 727/JT8D-100 center inlet duct geometry was used for illustrative purposes in this

study. Other inlets, such as in the F-18 aircraft [4] can have significantly different distortion

L ]
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characteristics and different responses of inlet distortion to variations in vortex generation design

parameters. The computations were made at an inlet entrance Mach number of 0.6, and

Reynolds numbers that ranged from 4.0x 108 to 16.0x 108 based on hydraulic inlet diameter (Di),
and inflow conditions that correspond to a shear layer thickness 6/D i = 0.005.

The.geometry of the co-rotating vortex generators used in this study, along with the
nomenclature used in positioning the individual blades are presented in Figs. 1, 2 and 3. The

important geometric design parameters include: (1) the vortex generator blade height (h/Ri), (2)
the blade chord length (c/Ri), and (3) the vane angle of attack (Bye). For all the calculations

within this study, the .vortex generator blade height (h/Ri) was set at 0.075, the ratio of generator

height to chord length (h/c) was fixed at 0.5, and the vane angle of attack (Bv_) was set at 16.0".
Instead of the usual spacing parameter (d/Ri), i.e., the distance between adjacent blades, the

positioning of the vortex generator blades was described in terms of spacing angle (avg) and a

sector angle over which the blades were positioned (Os).

Shown in Fig. 4 is the axial location of the vortex generator sector region (XvgctRi) covered

in this study. These sector regions were located between Xvg{R i = 1.0 and Xvg/R i -- 7.0, and cover

a sector angle (0s) up to 157.5" as measured counter-cloclcffise relative to an azimuthal angle of

180" with respect to the vertical axis of the duct.

Installed Vortex Generator Performance Characteristics

The effect of Reynolds number on engine face peak 60* -sector circumferential pressure

ring distortion is presented in Fig. 5 for the baseline inlet duct, i.e., without vortex generators.
There is a significant increase in maximum circumferential pressure ring distortion, from 0.045 to

0.087, over the Reynolds number range from 16.0x 106 .

Presented in Fig. 6 is the influence of Reynolds number on engine face distortion for the

vortex generator installation composed of 9 generators located at an axial location Xvg = 5.0. For
this installation of vortex generators, the maximum 60*-sector circumferential pressure ring

distortion index remains reasonably level between the Reynolds numbers of 16.0x 106 and 8x 106 .

For Reynolds numbers less than 8.0x 106 the flow at the engine face "breaks" down and the
distortion increases very rapidly. The systematic and continuous nature of the flow field

breakdown can be seen in the engine face total pressure recovery maps presented in Fig. 5.

Installed vortex generator performance, as measured by engine face circumferential distortion

descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of

generator blade height to local boundary layer thickness. Installations of co-rotating vortex

generators work well in terms of minimizing engine face distortion within a limited range of

generator scales. This means that the design of vortex generator installation is a point design,
and all other conditions are off-design.

The relative engine face distortion levels at different flight conditions is important since

inlets must be designed to operate with low distortion over the flight envelop. Trades between
what is needed at one flight condition, such as takeoff, and what is needed at other conditions,

such as transonic maneuvering at low altitudes or cruise, must be made. Reynolds number, Mach

number, inlet mass flow and engine tolerance to distortion can all change from one operating

condition to another. The different shapes of curves in Figs. 4 and 5 represent different

relationships between distortion levels at key aircraft operating conditions.

l J
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The relative engine face distortion at different flight conditions is important since inlets
must be designed to operate with sufficiently low distortion at all critical flight conditions.
Trade-offs between what is needed at one flight condition (e.g., take-off) and what is need at
other flight conditions (e.g. transonic maneuvering at low altitudes or high Mach number cruise

at high altitude) must be made. Reynolds number, Mach number, inlet mass flow and engine

tolerance to distortion can all change from one operating point to another. The different shapes

of curves in Figures 5 and 6 represent different relationships between distortion levels at key
aircraft operating conditions.

Figures 7 and 8 show the change in distortion with the number of vortex generators. Vortex
sector angle increases as the number of vortex generators is increased because of constant

spacing between generators causing a decrease in engine face distortion. The vortex generators
are at x/R = 3 in Figure 7 and at x/R = 5 in Figure 8 where the distortion levels are lower. The

effect of axial location is shown in Figure 9 showing an optimum in this case at x/R between 5 and

6. The effect of spacing between vortex generators is shown in Figure 10 for a 127.5" sector

angle at x/R -- 5 indicates that generating strong vorticity at the correct location can significantly
reduce distortion. Parameters such as vortex generator height, length and angle of attack have
not yet been systematically studied in other than simple model problems.

NUMERICAL OPTIMIZATION PROBLEM

Design of complex systems by numerical optimization techniques is becoming an accepted,
and in some cases even a standard approach. Vortex generator design for aircraft inlets can be

cast in a form to bring the large body of optimization tools to bear on this problem. Comments

will now be made on the choice of design variables, the performance parameters and
requirements for a numerical optimization method.

The design variables include the geometric _'ariables of each vortex generator, i.e., length,

height, and geometric angle of attack. They also include the relationship between vortex

generators such as their circumferential separation, =, and their axial location, x. These variables

are continuous. However, the number of vortex generators used is also a design variable which

must take integer values. In addition, the geometric angle of attack of a particular vortex

generator has local optima at both positive and negative values. These correspond to the
co-rotating and counter-rotating cases described above.

Selection of a performance parameter is a particularly difficult task for three reasons. First'

the required distortion level can be different at each important flight condition. Second,

distortions worse than the requirement are unacceptable whereas distortion levels better than the

requirement are of limited value. Third, use of vortex generators can cause loss of total pressure
which implies loss of thrust.

At each flight condition, i, a performance parameters could have the form:

Pi = fp[D[ -- Di] * [AP_" gi mif] (5)
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where D i is the distortion at the flight condition, D i is the allowed distortion, fp is either a penalty
function or a barrier function. As a penalty function it is adverse when the argument is negative

and constant or only moderately improving when the argument is positive. As a barrier function

it gets increasingly adverse as the argument approaches zero. APi° is the pressure loss in the
inlet including the effect of vortex generators, mi f is the rated fuel burned at this flight condition

and gi is the gross-to-net thrust ratio. This performance parameter sums the contribution of
performance parameters at several flight conditions. The contribution from each flight condition

is weighted by the amount of fuel burned in that segment of the flight by the second term in (5).
Consequently this term heavily weights the design to good cruise performance. The first term in

(5) requires that an acceptable level of distortion be achieved at all flight conditions. The barrier

or penalty function must be designed to prohibit unacceptable distortion levels since this can

result in engine damage or worse. The weighted summation of performance at each flight

condition is analogous to techniques presently used for component design in aircraft systems.

Using the discrete penalty function:

= 1 a > 0f& (a) (6)== a < 0

in Equation (5) results in a statement of the engineering problem that may preclude the use of
differential methods.

Evaluation of the performance parameter for each set of design variables requires solution

to a set of four partial differential equations at 250,000 to 500,000 node points. Each evaluation
uses 6 to 12 minutes of CPU time on a Cray X-MP or Y-MP. At commercial Cray computer cost

of $200 per hour, performance parameter evaluations are not excessively expensive compared to
multi-million dollar model tests in a wind tunnel. Evaluation on an engineering workstation at

1/10 the Cray speed and a purchase price on the order of $15,000 allows a trade of evaluation cost
versus time.

Two computational strategies are suggested. The first is based on gradient methods and
uses the barrier function. First order "steepest descent" methods are not expected to be useful

because of the strong interaction among the variables. In particular, consider terms of the form

0=p

0Xi0X j

(7)

where xi and x. are design variables and P is the performance parameter. Successful solution by

first order gradient techniques can be inhibited by large values of (7) for i ,, j compared to terms

where i = j. In these cases higher order methods are required. A full second order method

requires many evaluations of the performance parameter, which can be costly. Quasi-Newton "

techniques approximate the matrix terms, Eq. (7), by a positwe definite matrix. The

approximation improves with successive 1-D searches.

Since the number of vortex generators is not a continuous variable and since co-rotating

and counter-rotating vortex generators form two classes of solutions, a series of optimization

problems need to be solved. The most favorable of the separate cases would be selected as the

favored design.
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Rather than solve the entire problem de novo, aspects of a design could be improved by
numerical optimization strategies. For example, vortex generator height, length and angle of

attack could be held constant. Then for a predetermined number of co-rotating vortex

generators, their location and spacing could be optimized using traditional optimization

techniques.

A second strategy is discrete and uses the discrete penalty function, Eq. (6). The resulting

optimization problem is a mixed discrete-continuous design variable problem with a

discontinuous performance parameter. Discrete optimization techniques, such as simulated

annealing, may be adapted to this hybrid problem. Such techniques can require a large number

of evaluations of the performance parameter, so careful strategies must be adopted. Such
strategies are areas for further research.

CONCLUSIONS

Vortex generator design for aircraft inlets has played an important role in solving inlet

distortion problems in the last 20 years. Present design procedures are based on expensive and

therefore limited model tests. With the ability to compute inlet flowg with vortex generators
comes the ability to apply numerical optimization techniques to the design problem, at least in a
limited sense.

A performance parameter is suggested to account for both inlet distortion and total

pressure loss at a series of design flight conditions. The resulting optimization problem is

difficult since some of the design parameters take on integer values. If numerical procedures

could be used to reduce development test programs to a small set of verification tests, numerical

optimization could have a significant impact on both cost and elapsed time to design new aircraft.
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Figure (1) - Geomet_' definition for tile 727/,IT8D-100 center inlet.

Figure (2) - Geometrw definition of co-rotating vortex generators.
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Figure (3) - Nomenclature used for vortex generator positioning.

]

X_;/Ri= 4.0

Figure (4) - Axial locations of the vortex generator sector regions.
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The viscous airfoil design/analysis code XFOIL was extended to allow optimization using con-

formal mapping coefficients as design variables. The optimization technique employed was the

Steepest Descent method applied to a Penalty Function. The gradients of the aerodynmnic vari-

ables with respect to the design variables were cheaply calculated as by-products of XFOIL's

integral boundary layer Newton solver. The speed of the optimization process was further in-

creased by updating the Newton system boundary layer variables after each optimization step

using the available gradient information. Two examples are presented.

2 INTRODUCTION

L

Airfoil design can be broken into two schools of thought. The more recent of the two involves

the use of inverse design methods whereby the airfoil geometry is generated to match a specified

pressure distribution. The drawback is in determining what makes a good pressure distribution.

Many examples of inverse design techniques exist in the literature [1, 2, 3 I. The older design

practice uses trial and error geometry guessing. Each new geometry is evaluated using an airfoil

analysis method and is compared to previous designs. This is continued until an acceptable

design is iteratively converged upon. This is a time consuming process, but, it does lend itself to

numerical optimization techniques. Many methods have been tried for inviscid airfoils, several

examples of which are given by Vanderplaats [4, 5]. Optimization can be computationally

intensive, so to be a viable design tool the optimization method employed must be efficient.

Optimization efficiency can be increased by the use of gradient information but calculation

of this information adds to the computational burden. One method of obtaining the gradient

information is to perform finite difference calculations, however, this can be extremely expensive.

The object of the present research was to modify an existing 2D airfoil design/analysis code

to calculate gradient information during the analysis procedure, with a minimum of excess

work, such that this information can be used in an optimization process. The optimizer written

for the design code was simple and robust, but not necessarily the most efficientsince the

emphasis was on developing the ingredientsfor the optimization: design variables and gradient

information. The code used was Drela's XFOIL code [6].XFOIL has several design routines,

and includes both viscous and inviscidanalysis routines. Principles from both the design and

viscous analysis routines were combined to allow viscous optimizations.

The outline for the remainder of this paper is to firstpresent the governing equations,

the choice of design variables,and how these variables allow efficientgradient calculations.

These same gradients can also be used to further speed the optimization process which willbe

presented next. Two design examples willbe given at the end. J

PRECEDING PAGE D,._,_. m.,, ;.....,,..,.,
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3 ANALYSIS
]

3.1 Governing Equations

The optimization scheme utilized in XFOIL was an iterative 'Steepest Descent'-type. In order to

use this technique the Objective Function and constraints were combined into a Penalty Func-

tion such that the constrained airfoil optimization problem is converted into an unconstrained

problem. A constrained airfoil optimization problem can be stated in Penalty Function form as

Minimize:P(x)=F(x)+_. Kj(gj(x)) 2, (1)
3_--1

where.

gj(x) > 0 for j = 1,m (2)

are the constraints that the airfoil is subject to, and

/ 0 gAx) _>0Kj ,_ gAx) < 0 ' (3)
k

are the switches that turn the constraints on and off. The cost parameter, _, is a large positive

quantity used to control the influence of the constraint on the optimization process [5]. The

Objective Function, F(x), is the function that the optimizer will drive to the lowest possible

value, subject to the stated constraints, using the design variables x. For airfoil optimization

the Objective Function could be simply the drag coefficient or a combination of several airfoil

characteristics such as the negative of the range parameter, -MC_/Cd.

3.2 Design Variables

The unit circle in the _-plane can be mapped to an airfoil in the z-plane by the transformation

[3}

(1 _)ll-,,,)exp (A,, + iB,)i-" ...-- = - , n = 0,1,2, (4)

where, rr_t, is the trailing edge angle. The design variables employed in XFOIL's optimizer are

a finite number of the real and imaginary parts of the complex coefficients of Eq. 4:

1

x = {A2, As,"" ANa, B2, Bs,'" BNB} r. (5)

Using the above notation, there are a total of (NA - 2) + (No - 2) design variables. Each design

variable corresponds to a single design mode such that the optimal airfoil is constructed by a

sum of these design modes. A particular convenience of these design variables is that the A,,'s

control the thickness distribution of the airfoil and the B,'s the camber distribution. Due to

this distinction the A,_'s and B,_'s will be referred to, respectively, as the symmetric modes and

the anti-symmetric modes. The first 3 symmetric and anti-symmetric design modes are shown

in Fig. 1. The solid lines for the symmetric modes indicate the airfoil surface for one value of

A,_. The dashed lines show how the surface (i.e. the thickness) changes as another value of

A,_ is used. For the anti-symmetric modes, the lines are not the airfoil surface, but the camber

lines. The first usable design modes are A2 and B2 since A0, A1, B0, and B1 are constrained by

Lighthill's constraints [2] and therefore are not available as design variables. |
.J
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F The A,_ and B,_ coefficients completely control the airfoil geometry with the exception of

the trailing edge angle and gap. For a typical airfoil only the first twenty or so C,_'s are required

to define the airfoil. The value of the design variables for a DAEll airfoil are plotted in Fig. 2

as an indication of their magnitudes for a typical airfoil. The higher frequency modes quickly

become unimportant. In both cases, only approximately the first 15 modes are important.

The DAEll geometry is shown in Fig. 3 for reference. The higher modes, however, become

important for airfoils with small leading edge radii.

3.3 Aerodynamic Quantities

For optimization efficiency it is imperative that gradient information be calculated and cal-

culated cheaply. The gradient information will also prove useful in making XFOIL's viscous

analysis procedure run faster as will be shown shortly.

In its unmodified configuration XFOIL solves a viscous flow around an airfoil by constructing

3 linearized boundary layer (BL) equations at each airfoil and wake node (N airfoil nodes, N_

wake nodes) and solving the resulting system using a Newton solver. For a viscous airfoil

analysis all aerodynamic quantities of interest are functions of the five BL variables: C',, /9,

rn -- u,6", u,, and 6*. In this text C, will represent two quantities: in laminar regions it will be

the amplitude of the most-amplified TolLmien-Schlichting wave, and in turbulent regions it will

be the maximum shear coefficient. The Newton system only solves for three of these variables,

C_,/9, and m, since u, and 6" are related to the first three variables. For more details of XFOIL,

see Drela [6].

To calculate the required BL variable gradients, consider the Newton System used in XFOIL

[J]{6}= - {a}. (6)

This equation is a block matrix equation where the ith-row,jib-column block of the Jacobian

Matrix is

The corresponding ira-row block of the vectors are

{61} = 60i ,
6rni

Oh¸

(7)

{,,}{R,} = gl •
hi

(8)

Many of the terms in the Jacobian Matrix are zero, but the detailed structure is not important
here.

Equation (6) is constructed using 3 BL equations at each node all with the functional form

Ri = Ri(C.ri_ t, C.ri, Oi_l, /9i, ml, rrt2,'" ", rrlN+Nw), (9)

where, Ri can be fi, gi, or hi and the subscripts indicate which node is being considered. The

edge velocity, u_, is composed of an inviscid and a viscous source contribution,

L J
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u,, = q_ + }"_d,_m_, (10)

J

where, the inviscid part q_ depends on the airfoil geometry and hence A,, and B,,. The mass

defect, m, therefore also depends on A,_ and B,, and so does the viscous residual Ri in Eq. (9).

Consequently, a new Newton system is obtained in the form

I,,
The itS-row block of the Jacobian addition, [A], is

(11)

IA,] = O, 0

The added vector term contains the changes in the design variables

(12)

= }r{A} { AA2, AA3, ... AAN,,, AB2, AB3, ... ABNn , (13)

where, A( ) implies a change in the design variables between the current optimization step

and the next optimization step. The modified Jacobian matrix, [JIA], is no longer square,

but during normal viscous calculations the geometry is fixed and thus the AA,_ and AB,'s are

known (i.e. they are zero). Therefore, rewriting Eq. {11) with all knowns on the right hand

side and then pre-multiplying both sides by [j]-i the system reduces to

where,

{_>= _ [j]-i {R} + [D] {_), (14)

[D] = -[J]-I [A]. /lS)

The viscous solution is obtained when the residual, {R}, is zero. Thus, at convergence

Eq. (14) will have the same form as a first order Taylor series expansion of the 3 BL equations

in terms of the design variables. For example, the Taylor expansion for C,-, 0, and m at the i ts
node is

{c/ /at,-}N.4 Nm

=ZaA. . 116)
rim2 n----2

_rni Om Om

The Taylor coefficients are the BL variable derivatives being sought and after close examination

it can be seen that they are the columns of [D]. For example, the ith-row block of [D] is

L 1
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F

[D,] =

._2_. 0C,.. 8C,. aC,.
...

00

0m 8rn

O C ,,r

0@¸
°°"

Orn ¸

"°"

(17)

The elements of this matrix are found not by carrying out the matrix multiplication as

indicated in Eq. (15) but by solving the original Newton system with the columns of [A] added

as extra right hand sides. Since a direct matrix solver is used, very little extra work is needed

to calculate the required sensitivities. In addition, the extra right hand sides only have to be

included after convergence of the system, not every time the system is solved.

The above derivation presents a scheme to compute the BL variable gradients if the gradients

of the BL equations, Eqs. (9), are known (i.e. if the terms of [A] are known). The terms in [A]

are found by use of the chain rule and are included here without derivation

O Ri ( O Ri ] (Oqi-t'_ (ORi] ( Oqi "]
OA. = \Oq,-tJ \ OA. } + \ Oq, } \OA.] ' (18

where,

ORi ORi ORi mi_l

Oqi-1 - OUe, , 06_ I u2 ' (19
-- -- el--I

is found using Eq. (10) and the definition of the mass defect, m = u,6*. Similarly for the B.

derivatives. In the above four equations Ri can be fi, gi, or hi. At node i the derivatives depend

only on the information at that node and the upstream node i - 1. All the terms in Eq. (19)

are already availableonce XFOIL constructs the Newton system. Further detailsof the above

equations can be found in the author's Master's Thesis [7].

The only remaining unknown sensitivitiesin Eq. (18) are the derivativesof q. These can be

calculated analyticallyfrom the expression for q obtained afterthe complex potential ismapped

from the circle-planeto the airfoil-plane.At any point,¢, in the circle-plane,the physical speed

is

!)"" (,-,o _ Z(a. + •
q = exp _ In I- _/ ,_=0

The derivativesof thisequation are remarkably easy and cheap to compute:

= +q_

(20)

(21)

(22)

L

3.4 Geometry Gradient

Now, allaerodynamic variablesthat depend on the flow solution have been differentiated,and

only one further piece of gradient information is necessary; the geometry sensitivity.This

can be found analyticallyusing the integrated form of Eq. (4),however, in practice there isa

complication. The difficultyarisesdue to the need for the geometry gradient for the unit chord|
2
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F t
airfoil. Equation (4), when integrated, does not produce a unit chord airfoil and therefore its

gradient will not be for a unit chord. The geometry is subsequently normalized, however this is

not completely satisfactory for the gradient due to movement of the leading edge. This is not a

concern for symmetric airfoils and is a relatively small effect for cambered airfoils. Therefore,

the movement of the leading edge point was ignored in calculations for the gradient of z.

3.5 Updating BL Variables

The Newton system of XFOIL uses the BL variables of the previous solution as the starting

point of the new solution, therefore, the speed of the optimization can be increased by simply

approximating the BL variables of the new airfoil. This can be done by adding the following

perturbations to the BL variables at the old optimization step at those nodes not affected by

the transition point:

{6}= [ol{a}. (23)

The AA,,'s and ABn's in the {A} vector of Eq. (23) are the changes in the design variables

between the current and new optimization steps, and are calculated from Steepest Descent

Equation. The remaining two perturbations, 6u, and 66", can be found using

iv. Ou, Nn Ou,

n=2 n=2

and

N, (96" N. 06"

: E  aA. + Z -£ff:aB.. (2s)
-=2 n=2

For a reasonable optimization step sizethislinearextrapolation willgive a good approximation

to the new BL variables.Thus, the Newton system constructed during the analysis of the new

design point willconverge fasterthan ifno updating were done since itwillhave a better initial

condition.

Movement of the upper and lower surface transitionpoints from one panel to another will

cause such severe changes in the BL variablesthat thislinearextrapolation willnot work near

the transition points. Ifnot considered separately,the poor transitionpoint approximations

would be enough to negate the gains in efficiencypromised by the updating. The new location

of the transitionpoints isapproximated and then the BL variablesat each panel the transition

points have passed over are 'fudged' . This 'fudging'process willonly affectthe rate at which

the Newton system converges, itwillnot affectthe converged solution. For C,, 0, and u, the

approximation across the transitionpoint shiftisa linearextrapolation from the previous two

approximated points, i.e.

C,, = 2C_,_, - C,,_2, (26)

where iisa BL node the transitionpoint has passed over. The equations for 0 and u, are similar.

For the remaining two BL variables,m and 6", it was found to be a better approximation is

to set rni = rni_1 and 6" = 61_I. All that remains to be able to use these transition point

approximations is to determine how far the transitionpoint has shifted.This isdone using

,Szt,°, cgzt,.,,, 6C,. + cgzt,a, _ O*t,,,., 6,_, Ozt,.,,., ,.
= oc----S (2r)

L
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F All the derivative terms in the above are already calculated in XFOIL to construct the Newton

system, so the derivation is complete.

The convergence histories for a simple test case with and without updating the BL variables

are shown in Fig. 4. The number of iterations for the Newton solver to convergence is plotted

versus the optimization step number. The amount of time saved is not extensive, but the low

cost of updating makes it worthwhile. As the optimization continues the savings will be smaller

since the step sizes are small.

l

4 RESULTS

The two examples presented in this section were run on a DecStation 5000. These examples

were chosen to show the various properties of XFOIL's optimizer, they are not designed to be

realisticdesign problems.

5 Example 1 - Cd minimization, M = 0, c_ = 0 °

The firsttest case was designed as a simple example to build faithin the optimization code. A

NACA 0015 airfoilwas used as the seed airfoilwith Ca used as the Objective Function. The

only constraint was to keep the angle of attack constant at 0°. The Reynolds Number based

on the chord was 106. The two design variablesused were A2 and A3. Using only two design

variables willallow a pictorialrepresentation of the optimization path to be constructed.

Figure 5 portrays the optinfizationspace for this test case. The contours are of constant

Ca and a local minimum islocated in the upper leftcorner. The seed airfoilis located out

of the picture in the lower right corner and the path taken by the optimizer is marked by

the crosses. Convergence took 24 iterationsand approximately 12 minutes. Figure 5 clearly

shows the larger step sizesin the firstfive steps, i.e. in the region of large slope. The step

directionsare perpendicular to the contours, as they should be, where the gradients are large.

As the optimum is neared the step directions start to parallel the contours. This is due to

the approximations made in the gradient calculations. This isnot a detriment since the exact

mathematical optimum isrelativelyunimportant.

From Fig. 6 it is obvious that the largest drag reductions are produced in the firstfew

iterations.This is a recurrent observation. Figure 7 compares the optimal airfoilto the seed

airfoil.Because only two design modes were utilized,the possible change in the airfoilissmall.

However, largechanges were made in Ca by modifying the airfoilsuch that the transitionpoints

were moved further aft.

5.1 Example 2 - Cd minimization, M = 0, Cl = 0.5

The second example optimized the Cd of an airfoilusing 7 symmetric and 5 anti-symmetric

design modes. The seed airfoilwas an NACA 3412 and was constrained for a constant lift

coefficientand a minimum allowed thickness at 95% of the chord. This constraint was necessary

to prevent negative thickness airfoils.The cost parameter and the Reynolds number were

K = 100and Re= 5 x 10 °.

This example was stopped after a viscous Newton system was unconverged at the 38 th

optimization iteration. The Penalty Function is shown in Fig. 8. The drag reduction slows

slightly after 20 iterations but is definitely still headed down when the optimizer was stopped.

The optimizer was restarted using the last airfoil generated before the Newton system failed as

J
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F the new seed airfoil. Optimization convergence was achieved after an additional 15 iterations.

The optimization required approximately 30 minutes. The drag was further lowered from

Cd = 0.00389 to C,i = 0.00380. The reason for the unconverged Newton system isunexplained

but itdoes not invalidatethe resultsof the optimizer.

The pressure plots ofthe seed and optimized airfoilsare shown in Figs. 9 and 10,respectively.

The dashed lines in the Cp curves are the inviscid solutions and the solid lines the viscous

solutions.The waviness apparent in the Cp curve of the optimized airfoilisdue to the fact that

higher design modes were not used during the optimization.

Modification of an airfoildesign code to use mapping coefficientsas the design variableswas

successfullyimplemented. Gradient information was calculated within the analysis portion of

the code with a minimum of extra effort.The gradient information was shown to be accurate

When used in the proper way, the XFOIL optimizer can become a valuable design tool.

The optimizer should not be used as a 'black box' to create perfectairfoilsbut as a designer's

tool that will free the designer to become more creative and productive by reducing the time

spent in iterativedesign modifications. The 'optimal'airfoilsobtained should be used to give

the designer ideas for what characteristicsthe real airfoilshould have.

There were also severalareas in which the XFOIL optimizer did not liveup to expectations.

The firstisthe limited number of design variablesthat could be utilized.Itwas found that the

optimizer should be restrictedto NA _<12 and NB _ 12 because the higher mode derivatives

became inaccurate. This does not allow the generation of completely general airfoilswith the

chosen design variables. This is a disappointment, however the cheap gradient calculations

made possible by using the mapping coefficientsas design variablesmake up for this deficiency.

Another disappointment was the temperamental nature of XFOIL's Viscous Newton solver.

This does not destroy the promise of the optimizer itonly enforces that some care needs to be

exercised when using the optimizer.

Another area for future research isthe development of design variablesthat can also control

the trailingedge angle and gap, and ifpossible,be completely general.
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7 NOMENCLATURE

F

X

gj

rr/

A.

_n

NA

Ns

[J]
[A]

Objective function

General design variables

Constraints

Number of constraints

XFOIL thickness design variables (symmetric)

XFOIL camber design variables (anti-symmetric)

Last symmetric design mode used in optimization

Last anti-symmetric design mode used in optimization

Newton system Jacobian matrix

Addition to Jacobian matrix

Newton system unknown vector

Addition to unknown vector
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r
{R}
[D)
Cz
C'd

M

Re

N

Nw

f,, g,, h,

C_, O, m, d_j, u_, ,5"

Xtran

C-re

C_

q

= re iw

A

,5()

Residual vector

Aerodynamic variablesderivative matrix

Coefficientof lift

Coefficientof drag

Mach number

Reynolds number based on airfoilchord

Number of airfoilnodes

Number of wake nodes

Node i boundary layer equations

Boundary layer variables

Transition point location

Trailing edge angle parameter

Angle of attack

Inviscid surface speed

Complex circle-planecoordinate

Difference operator

Newton system perturbation

Real part of the quantity in the parenthesis

Imaginary part of the quantity in the parenthesis
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DESIGN OPTIMIZATION OF TRANSONIC AIRFOILS

aoh.B. N9 2 i
Department of Aerospace and Ocean Engineering - ;/e_ _i_'__._"_ "_"

Virginia :_P°lytechnlcBlacksburg'_,;InstltUtevirginiaand2406State1University _ . I _'--"

Numerical optimization procedures have been considered for the design of airfoils In transonic
flow based on the transonic small-disturbance (TSD) and Euler equations. A sequential approxi-

mation optimization technique was Implemented with an accurate approximation of the wave drag

based on the Nlxon's coordinate straining approach. A modification of the Euler surface boundary

conditions was Implemented in order to efficiently compute design sensitivities without remeshing

the grid. Two effective design procedures producing converged designs in approximately 10 global
Iterations were developed: interchanging the role of the objective function and constraint and the
direct lift maximization with move llrntts which were fixed absolute values of the design variables.

INTRODUCTION

Current aerodynamic design methods can be broadly categorized as inverse methods, e.g., Volpe

and Melnik _, and numerical optimization methods, e.g., Vanderplaats and Hicks 2. In general, In-

verse methods have been widely used as design tools primarily due to their computational efficiency.

They do have a weakness associated with the closure problem, which generally requires considerable

design experience. Also inverse methods, initially developed for potential flows, have been success-
fully applied to rotational flows based on the Euler equations, e.g., Giles, Drela and Thompkins 3
and the Navier-Stokes equations, e.g., Malone, Narramore and Sankar 4.

Numerical optimization methods have not been widely used in practical airfoil designs primarily

due to the large amounts of computational resources needed. Nevertheless, the methods will con-
tinue to be developed since they have many advantages such as automated design capability, ability

to handle multi-point design and varieties of constraints along with a capability of inclusion into

multi-disciplinary design of complete vehicles. A major reason for the large computational effort of

numerical optimization methods is the very large number of transonic analyses needed to develop

converged designs. Some improvements to the efficiency of numerical optimization methods have
been obtained through the implementation of the shape functions, by Vanderplaats and Hicks 2 and

Aidala, Davis, and Mason s, and through the use of efficient optimization procedures, Vanderplaats 6,
Joh, Grossman and Haftka 7 and Joh 8.

The motivation for the present work stems from plans to incorporate transonic airfoil designs

within an integrated aerodynamic/structural design of an aircraft wing, e.g., Grossman et al. 9.

Thus, our objective is to develop efficient numerical optimization procedures for the design of two-
dimensional airfoils at transonic speeds, using as few complete transonic analyses as possible.

A preliminary study for this effort is reported in Ref. 7, where some special treatments were

developed for design optimization based upon the transonic small-disturbance (TSD) equations. In

this paper, we will amplify and improve these ideas and examine in detail the applicability of the
methods to the more accurate Euler equation analysis.

DESIGN FORMULATION

Design Problem

The design problem considered can be stated as:

max/m/ze Cl ()()

such that ce(k) <_Cd, ,

A(X) >_ A_,.,

(1)

where )f is the vector of design parameters X = (X_, Xz,... ,XN) T specifying the airfoil geometry,

Ca is the drag coefficient due to wave drag, Ca, is the prescribed upper limit on wave drag, A is
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.,,_aNALYTIC,_, FORMULATION

TSD Analysis

The first approach taken is based on a TSD formulation. This approach is based on an asymp-

totic expansion of the perturbation potential in the limits of airfoil thickness (t/c) _ 0 and free-

stream Mach number Moo -- I, e.g., Ref. 12. The governing equation may be written as

[(I-M_)¢, (7+1)M_¢:] +¢w=0 (3)2 x

with the surface boundary condition on the airfoil surface, y = Y(x) expanded to be

_y(X,O) = dY 0 < x/c < 1. (4)
x _ -- --

It may be noted that the governing equation retains the important non-linear effects of transonic

flows but does not include the effects of entropy change across shock waves. Also. since the airfoil

surface boundary condition is applied along the axis and not on the actual surface of the airfoil, the

calculation can be performed on a simple Cartesian grid. This is useful in the design problem, since

we can efficiently utilize a fixed grid even with changing airfoil geometries. The specific analysis
code used for our TSD calculations is TSFOIL described in Ref. 13.

Ettler Analysis

In order to evaluate whether the design procedures developed using the approximate TSD anal-

ysis are valid for more accurate flow field methods, we have investigated the airfoil design with the
Euler equations. We utilize the complete set of governing equations for an inviscid, non-heat con-

ducting, adiabatic flow with negligible body forces. The equations may be written in conservatlon-law
form in Cartesian coordinates as

where

OQ OF c3G

o-7 + + = o, (5)

Q = P_ F = PUS + p G = puv' puv ' [ pv2+ p , (6)
P% (peo + p)u ] \ (peo + p)v

with velocity components u, v. density p, total energy per unit mass co = e + (u 2 + v2)/2, with e being

the internal energy per unit mass and pressure p, which for a perfect gas may be expressed as

p = (_ - 1)[peo - p(u 2 + v2)/2]. The surface boundary conditions for the Euler equations, representing

no flow through the solid surface may be expressed as

v(x, Y) = Y'(x) u(x, Y) , 0 <_x/c < 1, (7)

where a prime denotes differentiation with respect to x. Thus we see that the boundary conditions
must be applied on the actual airfoil geometry, requiring a new mesh to be generated at each

stage of the design process. We partially alleviate the computational burden of re-creating the grid

for each geometry by assuming that design changes proceed slowly, and for a specified number

of cycles consider the grid to be fixed to a baseline airfoil geometry. Then the surface boundary
condition must be altered to allow a small amount of mass transpiration through the surface to

approximately account for the changing geometry. This procedure fits in well with the sequential
approximate optimization algorithm used in the design process, which imposes move limits on the

design. For each optimization cycle a baseline geometry will define the grid and the grid will be kept

fixed throughout the approximate optimization cycle. This greatly reduces the computational effort
for the Euler designs.

Let the subscript b refer to the body surface of the new airfoil and the subscript bo refer to the
body surface of the baseline airfoil. The exact surface boundary condition on the new airfoil surface

is the vanishing of the normal velocity l_b • fib = 0 or. as in Eq. (7)

vb = Y'ub. (S)



447

Third International Conference on lnver._ Design Concepts and Optimization in Engineenng Sciences

(ICIDES-III). Editor: G,S. Dulikravich. Washincton D.C.. October 23-25. 1991.

the airfoil cross-sectional area, non-dlmenslonalized by ca, with c the airfoil chord and Amin IS the
minimum required area. The design is performed at a free-stream Mach number of Moo = 0.75 and
zero angle of attack, a = 0.

Thls type of problem has been solved first by Vanderplaats and Hicks 2 with a full potential
code, requiring 70 exact analyses. In Ref. 6, the same problem required 44 exact analyses with a
sequential optimization technique and data base approach where all the previous design Information
Is stored and reused for constructing higher-order approximations.

Here, we will examine the effects of utilizing two different codes, one a more approximate tran-
sonic small-disturbance (TSD} analysis and the second, a more exact invlscld Euler analysis. How-
ever, due to the different approximations In the two analyses, particularly the neglect of entropy
Jumps across the shock waves, the wave drag values are found to be different, with the TSD result
at a lower level. In order to develop somewhat similar designs between the Euler and TSD methods
it was found necessary to utilize a larger value of Cd, in Eq. (1) for the Euler designs.

Shape functions and Design Variables

We have chosen to design the airfoil using shape functions following the successful implemen-
tation of Vanderplaats and Hlcks2;

N+2

_.=1

where Y = y/c with y being the airfoil ordinate and c the airfoil chord length. The specified
shape functions Y, are functions of the non-dimensional abscissa z/c and the parameters X, are
the design variables. For the shape functions here, we selected four existing airfoils (N = 4},
namely, NACA 2412, NACA 64_ - 412, NACA 652 - 415 andNACA 642A215. There are two additional
shape functions for Imposing the boundary conditions at the trailing edge of the airfoil. These are
YN+_ = +x/c on the upper surface and zero on the lower surface, and YN+2 = --x/c on the lower sur-
face and zero on the upper surface. Usually with TSD analyses an open trailing edge is considered;
here we specify this thickness to be .0025c. For Euler analyses a closed trailing edge Is utilized.
This fixes the values of the coefficients XN+_ and XN+2 in terms of X_,..., XN.

Approximate Optimization

When a design optimization Is coupled with expensive numerical analysis code, most of the cost
of the optimization is associated with the exact analyses and sensitivity calculations. Even wlth
the most efficient transonic flow analysis code, the cost of the design process may be prohibitive if
the analysis code and an optimization algorithm are linked together directly, so that full analyses
are made for all the function evaluations during the design process. Instead we utilize a sequential
approximate optimization algorithm m. This approach replaces the original objective function and
constraints with approximations based upon nominal values and derivatives at an initial point. Ad-
ditionally, move limits are used to prevent the design from moving outside the bound of validity of
the approximations. Each approximate optimization problem Is solved until an optimum is found,
and then a new approximation Is constructed there, and the design optimization process is repeated
until convergence is achieved. An approximate optimization is typically referred to as an optimiza-
tion cycle, and this is also the terminology used here. A key part of Implementing a sequential
approximation algorithm Involves the approximation of the objective function and constraints. We
have found that these approximations play a crucial role In the design process. The procedures that
we have developed for approximating the lift and drag appear In detail later in this paper.

The specific optimizer used for our study is the general purpose optimization program NEW-
SUMT -A _1which is based on a quadratic extended interior penalty function and Newton method for
unconstrained minimization. The program provides the user with several approximation-switching
and move limit strategies.
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Now we utilize the grid system which was generated for the baseline airfoil to analyze the flow over

the new airfoil. Thus it is necessary to evaluate the new normal ancl tangential velocities on the
baseline aLrfoil surface Yo. (The normal velocity on the baseline airfoil Vbo-¢_, will not be zero). This
can be achieved by expanding the Cartesian velocity components at the baseline airfoil surface in
terms of the coordinates of the new airfoil surface as

vbo = vb + (Ov)b (Y - Yo) + .... vb + O(AY) , (9.a)
ay

ubo = ub + (_'_)b (Y - Yo) + .... ub + O(AY), (9.b)
o7y

where Ay = y - Yo. Thus using the boundary condition {8) we have vbo = ubY' + O(AY) and
Ubo= ub + O(AY). We can write these in terms of normal and tangential velocity components to the
baseline geometry as

"Ubo -- Ubo YC_

v,,,.o = , (10)
: + Yoa

ubo - vboY_ (11)v%
: + y_2

Using Eqs. /8)-(1 i), we can write an expression for V,% in terms of Vt_o which takes into account
the vanishing of the normal velocity at the new airfoil surface, Vnb = 0, as

V% (Y'- Y¢;), (12)
V,% = 1 + Y 'Y_

where terms of O(AY) have been neglected.
The boundary conditions for the Euler calculation may be evaluated by extrapolating from the

field points to the surface y = Yo values of p_, Pbo and ubo and Vbo. The tangential velocity V% is
computed from Eq. (11) and the normal velocity V,% from Eq. (12). Values of the total energy are
computed from

(peo)% =k,+/_'_']'_1[Pbo P_(V_2,o2+ Vt2b°)] " (13)

The specific analysis code used for our Euler calculations is FLOMG which is based on Jameson's
time-stepping TM and multlgrld algorithms is. Although the code was developed by Swanson and
Turke116 for solving the Navier-Stokes equations, we will utilize it only In the inviscld, Euler solver
mode.

LIFT AND DRAG APPROXIMATIONS

We first considered simple linear approximations for the lift and wave drag, as:

4 Of (X, -X°), (14)

where f is either the lift or the wave drag and fo is evaluated with the initial design parameters
X°,..., X °. The sensitivity derivatives, cgf/OX, are evaluated using one-sided finite-difference ex-
pressions. The effectiveness of the lift approximation is indicated in Tables la and lb for both TSD
and Euler analysis methods. We see that when the design variables are changed by as much as 2%,
the linear approximation of the lift coefficient remains within a 2% accuracy, compared to the exact
analysis, for the TSD solutions and to within 0.5% for the Euler solutions. However, this situation
is not repeated for the drag approximation. As seen in Tables la and lb the linear approximation
for the wave drag does not correlate closely with the exact results, with errors of 25% for the TSD
solutions and 15% for the Euler solutions, when the design variables change by 2%. This result



449

Third lnternataonal Conference on Inverse Design Concepts and Opumtzauon in Engineenng Sciences
(I_ID_S-III), Editor: G.S, Dulikravich. Washington D.C.. October 23-25. 1991

was not unexpected since transonic flows are very nonlinear and shock-wave movement must play

an important role in the wave-drag approximation.
In order to better approximate the wave drag, we considered the method of strained coordinates

for perturbations of transonic flows with shock waves, introduced by Nlxon _r. This method has

been applied for airfoil approximations by Stahara 18. In this method, the perturbations are made in
a strained coordinated system where the shock remains fixed. Coordinate straining uses the axial

position of the shock wave on the airfoil, xm and the height of the tip of the shock wave above the
airfoil, yr. When z, changes by Ax, and yt changes by Ayt, the coordinates (x, y) of each point in

the flow field are changed by Ax and Ay given by

AX = s(x) Az,, Ay = y Ay t. (15a, b)
Yt

For the TSD analysis, following Ref. 17, the straining function s(x) is taken as

=(c- =) (16)
s(=) = =,(c - x,)'

which is valid for 0 < x < c and is equal to zero otherwise.

For the TSD analysis, the strained coordinates are used first in the process of calculating finite-

difference sensitivity derivatives according to the following steps:

I. The i-th design variable is perturbed by AX, and the corresponding Axs and Ay, are calcu-
lated from a new solution of the flow field and used to approximate the shock sensitivities

Ox_._.L _-- Ax.......ks Oyt Ayt (17a, b)
OXi AX, ' OX, - AX, "

2. The flow-field sensitivities are approximated, using Ax and Ay from Eqs. {15a,b), in terms
of the axial velocity for the nominal design u ° and the axial velocity for the perturbed flow
field u as

c3u i

-_-_(x, y) = _ [u(x + Ax, y + Ay) - u°(x, y)]. (lS)

The strained coordinates are used again in approximating the flow at a new design point R as

follows: First the new shock location and shock-tip position are calculated by a linear approximation

40yt (Xi - X°). (19a, b)a=s (x, - x °) _'v, = ZAxs = _
i=1 i=1

Values of Ax and Ay are calculated from Eqs. {15a,b} and then the axial velocity u is estimated from

4 au(z, v)
_(= + ix=,_ + AV)= _o(=,V)+ __, OX,-- (x, - x,°). (20)

The wave drag coefficient is determined from a contour integral of the Jump in pressure across

the shock, which may be written as13:

Ca = -35/3M_o3/4 (7 + 1) fs [u]3 dy, (21)"T hock

where Moo is the free-stream Mach number. 6 is the nominal airfoil thickness, 7 is the ratio of specific

heats and [u] is the jump in u across the shock.

For the Euler analysis a different implementation of the method of the strained coordinates is
utilized. First. since the wave drag is calculated by integrating surface pressures, only the solution at

the body surface needs to be approximated. The coordinate straining in y direction is not necessary.
Furthermore. accurate solutions for the Euler wave drag were obtained by approximating the surface
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pressures directly, rather than computing from the flow field. Thus the surface pressure sensitivity
and approximation, respectively were calculated as

c3p [x, Yo(x)] = 1
aX, _ (p[z + Az, Yo(z + Az)] - p°[z, Yo(z)]) , (22)

,4

p[z + Az, Yo(z + hx)] = p°[z, Y0(z)] + _ by[z, Yo(z)] (X, - X°), (23)
aX,

S=I

where Ax is the amount of coordinate straining and the superscript 0 corresponds to the value for

the nominal design. The pressure on the perturbed geometry can be approximated by using Taylor

series expansion about this pressure on the baseline geometry and then the wave drag coefficient
is determined from the integration of the approximate surface pressure force in x-direction.

The non-uniqueness of the straining function has been discussed in Refs. 17 and 18. Here,

several tests were made to select the best straining function in terms of approximaUon accuracy for
the Euler analysis. The linear piecewise continuous straining appeared to be most accurate and

well-behaved. This has been also pointed out with the full potential method in Ref. 18. The linear
piecewlse continuous function is given by

s(z) = { z/z, • 0 < z < z,, (24)(c- x)/(c- x.) • x, _< _<c,

was used, where zs is the location of shock wave.

The results of Nixon's coordinate-straining approximation on the drag coefficient are tabulated

in Tables la and lb. It is seen to significantly improve the wave drag approximation, with the errors

reducing to less than 3% for the TSD solutions and 7% for the Euler solutions, when the design

variables change by 2%. The effect of this approximation on the airfoil pressure distributions is
shown in Figs. la and lb.

DESIGN RESULTS

In this section we consider several optimizaUon strategies for the transonic airfoil design problem
of maximizing lift with constraints on wave-drag and airfoil cross-sectional area as given by Eq. (1).

The minimum non-dlmensional area is taken to be A,,_,, -- 0.075. The wave drag constraint is taken
to be Ca, = 0.004 for the TSD designs and Cdt = 0.010 for the Euler designs.

Designs based on the TSD analysis

Strategy A: Approximate Optimization with Tight Move Limits - The first optimization strategy that we
employed consisted of imposing tight move limits in the approximate optimization procedure. The

results of applying this strategy with two different initial designs are tabulated in Tables 2a and 2b.

In the first case, we imposed 5% move limits in order to keep the error in the drag approximation to

within 10%. The solution ceased to improve after 27 iteraUons and the move limits were tightened
to 2.5%. At 60 iterations the move limits were further reduced to 1.25% and the solution was con-

sidered to be converged. However, in the second case, corresponding to different initial conditions,

employing a similar strategy resulted in a completely different design, as can be seen in Table 2b.

In order to examine whether these solutions were local maxima we considered the following:
denoting the first converged solution as R I and the second as 3_2, we defined an intermediate
design state

.X"= .X2 + f(.,.£ 1 _ .,_2), (25)

where the parameter f may be considered the proportional distance of the intermediate design
between X= and R I. We computed both approximate and exact value for the lift and wave-drag
coefficients for intermediate designs with 0 _< f _< I. The results are plotted in Fig. 2. From the

upper chart in Fig. 2 we see that the lift coefficient is well-behaved between design state 2 and

state i, exhibiting no local maxima or minima. In the lower chart, we see that the culprit is the
drag-coefficient constraint, which exhibits a very wavy behavior about Cd = 0.0040. Thus we can see

that if we are a design state 2, the optimizer would prevent you from moving toward state 1. since
that would be a direction of increasing drag.
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Strategy 13: Drc_ MOaOrtization foUowed by Lift M_tzatlon - The strategy that we found to be useful

to avoid the problems associated with the drag constraint consisted of Interchanging the role of the

drag constraint with the lift objective function: We had noticed that design problems of mInimizIng

drag with a constraint on the lift were well behaved. In order to solve the design problem formulated
in this paper, we adopted the following strategy: first the wave-drag coefficient was ml_mized with
a constraint on the lift coefficient of C_ > 0.5 and cross-sectional area ratio A > 0.075; then, when Ca

was below 0.004 we reverted back to the original design formulation of maxamizlng C_ with constraInts
of Ca < 0.004 and A > 0.075.

The results of this strategy were very good. We found that during the drag minimization phase.
very large move limits, as large as 500% could be used without any adverse effects. During the

lift maximization phase, move limits of 20% were Imposed. This strategy seemed to be robust, and

the solutions did not depend upon the Inltlal data. The design history for the first case. startIng
from _-0 = (1.0, 0.0, 0.0, 0.0) 7, is tabulated In Table 3a. The design results for four different Initial

designs are summarized In Table 3b. In all cases convergence to nearly the same design result

was obtained In 8-13 design cycles. The pressure coefficient and corresponding airfoil shape of
the Initial and final designs tabulated In Table 3a, are shown In Fig. 3. The design appears to be

physically reasonable, with a weakened shock wave and lift Increased through aft camber.

Strategy C: Approximate Optimization with Absolute Move Limits- After we obtained successful design

results using the strategy B, we carefully Investigated the TSD solutions to determine the cause of

the noisy drag calculation. We found that the spline interpolation routIne In the TSFOIL program

generated an irregular airfoil leadIng-edge geometry. Although this should not be Important In the
TSD solutions, which lose their validity at the leading edge, It clearly affected wave drag calculations

and generated noise. We replaced the origInal routine with a more effective interpolation based on

the approximate arc-length of the airfoil wlth a periodic boundary condition and consequently was

able to generate fairly smooth and round noses.

Next. we attempted to directly maximize the lift with tight move limits using the new geometry
Interpolations. The design process behaved much better due to the considerably reduced noise in

the wave drag, even though the noise was not removed completely. We felt that we should increase
the move limits in order to get faster convergence. We also found that we could produce reasonably

efficient designs using move limits which were fixed absolute values rather than percentages of the

design variables. By several tests, we found that initially 0.5 could be used without any adverse
effect and then it was reduced by half when the design did not make any improvement. The design

results using this procedure are tabulated In Tables 4a and 4b. We experienced some convergence

difficulties with TSFOIL usIng this approach. We will examine this strategy in more detail with the
Euler analysis method.

For the TSD designs, each exact airfoil analysis using the program TSFOIL required I0--15
CPU seconds on the IBM 3090 at V. P. I. & S. U., with N+1(5) analyses needed per design cycle.

The approximate optimization using the program NEWSUMT-A required 10--12 CPU seconds on the

same computer.

Designs based on the Euler analysis

On the basis of the TSD design experience, we applied the two successful design strategies. 13

and C to the same design problem with the Euler analysis. Recall that the wave-drag constraint

value was changed to 0.01 for the Euler design due to the differences In wave drag prediction between

the TSD and Euler methods. The original value of 0.004 was found to be too stringent for the design

problem with the Euler analysis.

Strategy B: Drag MinimizaUon followed by Lift Maximization - Table 5a represents the complete design
history for the first case. startIng from ._o __ (1.0, 0.0, 0.0, 0.0) 7`. In the lift maximization phase,

initially 50°,6 move limits were utilized, which yielded a large improvement In the lift coefficient to

a value of C_ = 0.7136 for the first 8 iterations. After that we reduced move limits by half twice and

then finally we imposed very tight move limits of 2% which after 25 iterations resulted in Ct = 0.7144.

For the purposes of this study, we consider the design achieved after 8 iterations, corresponding to
the 50% move limits to be acceptable as a final design. The equivalent value of Ct In the table is

the relevant estimated lift coefficient when all of the violated constraints are brought to be critical.
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Lagrange multipliers are used to estimate these equivalent let coefficients since they represent the
amount of change in the obJective function due to the unit change in a constraint at an optimum.
This provides us information whether the design makes true Improvement or not. We found that
this strategy was as robust and efficient for the design based on the Euler method as It was for the
TSD method. As shown in Table 5b, four different initial conditions yielded nearly the same final

design in 10-12 design cycles. The pressure distributions and corresponding airfoil shapes of the

initial and final designs are shown in Fig. 4.

Strategy C: Lift Maxtm_.atlon with Absolute Move Limits - The complete design history for the first
case with strategy C is tabulated In Table 6a. Here also, we consider the design achieved after

9 iterations, corresponding to the 0.5 move limits to be acceptable as a final design. Table 6b

represents the summary of the design results for four different cases. All cases did converge to

approximately the same design result in 8-10 global iterations.

For the Euler designs, each exact airfoil analysis using the program FLOMG required approx-

imately 40 CPU seconds on the CRAY 2S at NASA Langley. The approximate optimization using
the program NEWSUMT-A required 40-60 CPU seconds on the IBM 3090 at V. P. I. & S. U. The

additional computer time associated with the approximate optimization of the Euler design is partly

related to the more complicated wave drag calculation compared to that used for the TSD design.

Error Magnification during Optimization

Table 7 compares the lift/wave drag ratios predicted by TSD and Euler methods for the four
airfoils used in the shape definition and the optimum TSD airfoil. It is seen that the agreement

between TSD and Euler is much poorer for the optimized airfoil. This indicates that there may be
a rlsk associated with optimization based on an approximate method. The optimization procedure

may "improve" the design by exploiting the weaknesses of the approximation.

CONCLUSIONS

We have considered numerical optimization procedures for the design of transonic airfoils based

on the transonic small-disturbance (TSD) and Euler equations. A sequential approximate optimiza-

tion procedure was implemented with accurate approximation of the wave drag based on the Nixon's
coordinate straining technique. A modification of the surface boundary conditions was utilized in

order to efficiently compute sensitivity derivatives without remeshing the grid with the Euler anal-

ysis.

The airfoil design problem which we considered consisted of maximizing the lift with constraints

on the wave drag and area. We found that when the computed drag did not vary smoothly with the

design parameters, the optimization process produced local extrema. A procedure interchanging

the role of the objective function and constraint, initially minimizing drag with a constraint on the
lift was found to be effective in producing converged designs. This procedure was also proven to be

robust and efficient for cases where the drag varied smoothly, such as with the Euler solutions. The

direct lift maximization with move limits which were fixed absolute values of the design variables,

was also found to be a reliable and efficient procedure for designs based upon the Euler equations.
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change* Lift Coeff Drag Coeff. change* Lift Coeff. Drag Coeff.

% Linear Exact Linear Coord-St. Exact % Linear Exact Linear Coord-St. Exact

0.0 0.5341 0.00511 00 0.4878 0.00787

0.5 0.5472 0.5471 0.00584 0.00579 0.00585 05 0.4948 0.4942 0.00866 000870 0.00854

-0.5 0.5210 0.5216 0.00439 0.00447 0.00436 -0.5 0.4809 0.4813 0.00708 000718 000724

1.0 05602 0.5614 0.00656 0.00654 0.00657 1.0 0.5016 0.5006 0.00946 0.00957 0.00923

-I.0 0.5080 0.5098 0.00367 0.00396 0.00400 -1.0 0.4737 0.4749 0.00628 0.00652 0.00664

1.5 0.5733 0.5762 0.00728 0.00736 0.00755 1.5 0.5086 0.5070 0.01029 0.01049 0.00996

-1.5 0.4949 0.4987 0.00295 0.00346 0.00342 -1.5 0.4667 0.4685 0.00549 0.00590 0.00607

2.0 0.5864 0.5918 0.00800 0.00827 0.00845 2.0 0.5153 0.5135 0.01104 0.01149 0.01072

-2.0 04818 0.4881 0.00223 0.00302 0.00295 -20 0.4598 0.4621 0.00470 0.00533 0.00553

* Design vasaable* increased by specified percentage from

(0.5, 0.5, -0.5, 0.5) T

Table la. Lift mad Drag Approximation_ - TSD.

" Design vasaables increased by specified percentage from
(05, 0.5, -0.5, 0.5) 7"

Table lb. Lift and Drag Approximatious - Euler.
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Design Design Parameters Design ] Design Parameters

cycle ,¥1 X2 X3 X, Ct Cd A cycle Xl X2 X3 X, Ct Cd A

0 0.5 0.5 -0.5 0.5 0.5296 0.0059 0.0805 0 0,8 I-0.4 0.7 -0.3 0.4418 0,0061 0.0739

1 0.510 0.498 -0.524 0.490 0A954 0.0040 0.0779 1 0.837 -0.426 0.659 -0.9,81 0.4081 0,0038 0.0729

27 0.400 0.750 -0.649 0.481 0.5385 0.0040 0.0750 9 1,093 -0.483 0.504 -0.273 0.4061 0.0041 0.0750

60 0.301 0.891 -0.763 0.565 0.5542 0.0040 0.0750 11 1.114-0.487 0.491 -0.275 0.4049 0,0040 0.0750

71 0.280 0.934 -0.805 0.591 0.5592 0.0040 0.0750 15 1,122-0.487 0.487 -0.277 0.4055 0.0040 0.0750

Table 2a. TSD Design Strategy A : Approximate Optimization Table 2b, TSD Design Strategy A : Approximate Optimization
with Tight Move Limits - initial condition 1.

with Tight Move Limits - imtial condition 2.

i Design I

cycle

0

1

2

3

4

5

6

7

8

*9

10

Design Parameters

XI X2 Xs X_ Ct C_ A case

1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822

1.024 0.100 -0.075 -0.096 0.5195 0.0054 0.0750 1

0.773 0.280 -0.244 0.137 0.5041 0.0038 0.0750

0.631 0.417 -0.393 0.295 0.4999 10.0032 0.0750 2

0.504 0.516 -0.476 0.404 0.4989 0.0028 0-0750

0.418 0.650!-0.648 0.542] 0.5005 i0.0025 0.0750 3
0.071 1.038 _-1.072 0.9451 0.5080 0.0017 0.0750

0.080 1.308 -1.614 1.261 0.512410.0011 0.0750
4

0.001 1.475 -1.938 1.516 0.5049 0.0006 0.0750

0.001 1.770 -1.863 1.215 0.6696 0.0034 0.0750

0.001 1.876 -1.940 1.209 0.7078 0.0041 0.0750

begin llft mm6mization.

Table 3a. TSD Design Strategy B : Drag Miuimization followed

by Lift Maximization - initial condition 1.

Design Parameters design

Xl X_ X_ X4 Cl C_ A cycles

1.0 0.0 0.0 0.0 0.5656 0.0103 10.0822

0.001 1.876 -1.940 1.209 0.7078 0.0041 0.0750 10

0.0 1.0 0.0 0.0 1.0676 0.0459 0.0771

-0.025 1.878 -1.889 1,179 0.7149 0.0042 0.0750 8

0.0 0.0 0.8 0.0 0.6491 0.0297 0.0786

0.043 1.904 -2.068 1.279 0.7034 0.0041 0.0750 13

0.0 0.0 0.0 1.0 0.5534 0.0242 0.0996

-0,006 1.923 -2.033 1.270 0.7091 0.0040 0.0750 10

Table 3b. TSD Design Strategy B : Drag Minimization followed

by Lift Maximization - summary of designs with var-
ious initial conditions.

L

Design Design Parameters

cycle X_ X2 Xs X, Ci C_ A ca_e

0 1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822

1 1.123 0.347 -0.491 0.041 0.5594 0.0061 0.0750 1

2 0.640 0.524 -0,452 0.263 0.5450 0.0043 0.0750
3 0.518 0.88I -0.844 0.473 0.5966 0.0045 '0.0750 2

4 0.032 1.257 -1.000 1 0.737 0.6407 0.0044 t0.0750

5 0.155 1.381 -1.249 0.785 0.6649 0.0046 0.0750 3

6 -0.006 1.524 -1.374 0.929:0.6672 0.0041 0.0750

7 -0.099' 1.667 -1,504 1.024 10.6853 0.0041 0.0750 4

8 -0,224 1,916 -i,752 1.179 10.7218 0.0041 0.0750

Table 4a. TSD Design Strategy C : Approximate Optimization
with Absolute Move Limits - initial condition 1.

Design Parameters design

Xl X2 X3 X, Ct Cd A cycles

1.0 0.0 0.0 0.0 0.5656 0.0103 0.0822

-0,224 1.916 -1.752 1.179 0.7218 0.0041 0.0750 8

0.0 1.0 0.0 0.0 1.06761 0.0459 0.0771

-0.332 2.035 -1.841 1.264 0.7360] 0.0040 0.0750 8

0,0 0.0 0.8 0.0 0.6491 0.0297 0.0786
I

-0.539 2.340 -2.069 1.423 _ 0.7922 0.0041 0.0753 8

0.0 0.0 0.0 1.0 0.5534 0.0242 0.0996

-0.434 2.077 -1.749 1.224 0.7638 0.0042 0.0750 5

Table 4b. TSD Design Strategy C : Approximate Optimiza-

tion with Absolute Move limits - mammary of designs
with various initial conditions.

J
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Move De=gn Destgn Pica, etch ""

Litmts eyrie X1 X_ X3 X4 Ci Cd A C_, I-

0 1.0 0.0 0.0 0.0 .48912 .011768 0.0810

1 0.827 0.100 0094 -0.088 49602 .009069 0.0750

500% 2 0.555 0.331 -0108 0.157 .49838 .007961 0.0750

3 0.325 0.558 -0.346 0A05 .49742 .006879 0.0750

4 -0.313 1.150 -0.923 1.040 .49438 .005745 0.0750

°5 -0.270 1.645 -1231 0.927 .65665 .009951 0.0750

,5 -0.375 1924 -1.549 1.110 .68,561 .009783 0.0750

50% 7 -0.480 2.067 -1.665 : 1.200 .70255 .010024 0.0750

':'8 -0.632 2.218 -1.777 1.319 .71358 .010223 0.0750 .70617

9 -0.721 2.277 -1822 1.390 .71068 .010204 0,0750 .70358

10 -0.679 2.252 -1.822 1.37,5 .707,59 .010026 0.0750 .70669

25% all -0.729 2.303 -1.870 1.425 .708,18 .010026 0.0750 .70746

12 -0.792 2.350 -1.905 1474 .70806 .010084 0.0750 .70484

12.5% 13 -0.729 2.295 -1.860 1.421 .70698 .010019 0.0750 .70660

14 -0.721 2,302 -1.877 1.426 .70759 .009973 0.0750 .70864

15 -0.717 2.307 -1.885 1.426 .70899 .009979 0.0750 .70980

22 -0.719 2.344 -1.931 1.446 71384 .009999 0.0750 .71388

23 -0.725 2.351 -1.939 1.4,52 .71404 .010001 0.0750 .71402

24 -0.736 2.365 -1.954 1.46,5 .71427 .009998 0.0750 .71435

25 -0.736 2365! -1.953 1.485 .71439 .010002 0.0750 .71432

" begin lift maximization.

a .ta.rting point for reduced move limits.

** CI,q, : Equiv_¢ VAlue of Ct.

Table 5a. Euler Design Strategy B : Drag Miaimization followed by Lift

Mmomazation - iaiti "1 condition 1.

Move De= g-a

Limat8 eyrie Demgn PLr_me_e_ i i_!X_ X_ X3 X4 CI C_ A C .

0 1.0 0.0 0.0 0.0 48912 011768 0.0810

1 0.652 0.500 -0.220 0057 .56529 010919 0.0750

2 0.239 1.000 -0.672 0.455 .60127 010031 0.0750

3 0.071 12,57 -0923 0.`534 62789 009978 0.0750

0.5 4 -0.078 1.470 -1.098 0.772 64813 .010042 0.0750

,5 -0.227 1635 -1227 0894 66244 010129 00750

6 .0.341 1792 -1380 1.018 67371 009992 0.0750

7 -0.434 1956 -1.553 1.137 .68770 009898 0.0750

8 -0.514 2.082 -1.675 1.22,5 69950 009951 0.0750

a9 -060`5 2.159 -1.722 1.288 .70587 010117 0.0750 .70143

10 -0677 2.199 -1.749 1.342 .70144 010089 00750 !698,5,5

11 -0.665 2.232 -1.805 1.362 .70542 009989 0.0750 1.70581

0.2,5 12 -0.721 2.292 -1.8.58 1.415 .70795 .010031 0.0750 .70684

a13 -0.768 2.340i-1.907 1.465 .70768 .010012 0.0750 .70723

14 -'1.811 2.367! -1.924 1.495 .70710 010064 0.0750 .70464

0.12,5 a15 -0.784 2.3601-1.931 1.486 .70734 .009989 0.0750 .70776

16 -0.810 2.379 -1.942 1.504 .70790 .010040 0.0750 .70632

17 -0.778 2.365 -1.942 1.488 .70809 .009970 0.0750 .70932

0.02 29 -0.790 2.415 -2.005 1.521 .71310 .009997 0.0750 .71323

35 -0804 2.435 -2.028 1.5401 .71336 .009998 0.0750 .71345

36 -0.807 1438 -2.032 1.543 31343 .010000 0,0750 .71339

'_ _artiag pomt for reduced move limit=.

• " C_,t, : Equivaleat Value of Cj.

Table 6a. Eukr Design StrateKy C : Approximate Optlmiz&tion with Ab-

Iolute Move l.i_ita - imtial etmdition 1.

Design Parameters design

case X, X2 X3 X4 Ct C,/ A cycles

1.0 0.0 0.0 0.0 0.4891 0.01180.0810

1 -0.670 2.266 -1.837 1.371 0.7129 0.0101 0.0750 11

0.0 1.0 0.0 0.0 0.6977 0.0266 0.0759

2 -0.640 2.233 -1.801 1.337 0.7127 0.0101 0.0750 11

0.0 0.0 1.0 02 0.5050 0.0467 0.0967

3 -0.649 2.237 -1.803 1.344 0.7121 0.0101 0.0750 12

0.0 0.0 0.0 1.0 0.3558 _0.0165 0.0984

4 -0.630 2.206 -1.772 1.322 0.7090 0.0101 0.0750 10

Table 5b. Euler Design Strategy B : Drag .Minimization fol-

lowed by Lift maximJation - summary of designs

with various initial conditions.

Design Parameters design

caae X1 X2 Xa X, Ct Cd A cycles

1.0 0.0 0.0 0.0 ).4891 0.0118 0.0810

1 -0.605 2.159 -1.722' 1.28810.7051 0.0101 0.0750 9

0.0 1.0 0.0 0.0 0.6977 0.0266 0.0759

2 -0.636 2.194 -1.759 0.323 0.7055 0.0101 0.0750 8

0.0 0.0 1.0 0.0 0.5050 0.0467 0.0967

3 -0.650 2.208 -1.774 1.339 0.7049 0.0100 0.0750 10

0.0 0.0 0.0 1.0 0.3558 0.0165:0.0984

4 -0.604 2.255 -1.833 1.372 0.7090 0.0101 0.0750 9

Table 6b. Euler Design Strategy C : Approximate Optimiza-

tion with Absolute Move limits - surrmaa.,'y of designs

with va_ous initial conditions.

Airfoils

Airfoil 1

C,/Cd .....

Optimized, TSD

TSD Anaysis

54.9

Euler Analysis

41.4

Airfoil 2 23.3 26.2

Airfoil 3 21.9 23.9

Airfoil 4 22.9 21.6

83.4171.0

Table 7. Error Maginification during Optimization.
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F IDENTIFICATION OF DYNAMIC CHARACTERISTICS

0F FLEXIBLE ROTORS AS DYNAMIC INVERSE PROBLEM 1_, _ t__ _

!

W.P. Roisman, L.D._ajingortin _9 2 I y_.____
Khmelnitsky Technological Institute, USSR.

_. , i"

In this work the problem of dynami'c and balanci of flexible rotors were •

considered_ wich problems were set and solved as the problem of the identifi-

cation of flexible rotor systems_ or which is the same, the inverse problem of

the oscillation theory dealing with the task of the identifying the outside

influences and system parameters on the basis of the law of motion known. This

approach to the problem allows to disclose the picture of disbalances through-

out the rotor-under-test (something that traditional method of flexible rotor

balancing, based on natural oscillations, could not provide), and Identlfy

dynamic characteristics of the system, which correspond to a selected mathe-

matical model. Eventually, various methods of balancing were developed depending

on the special features of the machines as their design, technology and opera-

tion specifications. Also, theoretical and practical methods are given for the

flexible rotor balancing at far-from-critical rotation frequences, which

methods do not necessarily require to know forms of oscillation, dissipation and

elasticity-and-inertia characteristics, and to use testing masses.

I. INTRODUCTION

The universal trend of reducing weight and gabarits of flying device

engines along with high power requirements has paved way for the wide-spread

application of flexible rotors and non-rigid supports. For these types of

rotors, dynamics problem dealing, whith the elimination of dangerous resonance

states in the area of operating rotation frequences of the machine, becomes

vital. For machines under development, which do not have any well-proven analogs

it is hardly possible to evaluate in terms of quantity such characteristics as

inertia, rigidity and damping capability judging only by the drawing of the

machine, for every one of construction elements comes simultaneously as a mass

and rigidity, a source of both exiting and extinguishing vibrations, and the

assumption of rotor non-deformity is no more valid. This brings us to the point

where principally new balancing, technique and dynamic research are required.

Now, a good deal of experimental methods are known, which allow to more

precisely evaluate the elasticity-and-inertia parameters, deflection curves and

rotation frequences while finishing the machine. However, these methods can not

always take into account the diversity of influencing factors and dynamic model

of the system. In the meanwhile, it is the task of a vital importance to find

accurate values of the said parameters, corresponding to the selected mathema-

tical model, thus making this model more effective. Finding values of these

parameters for subsequent ascertaining the deflection curve forms and rotation

frequences is an extremely important stage of realization of the most balancing
methods.

It is well known that now close attention has been given to the problem of

development of mathematical or dynamic models of higher accuracy, which models

have to reflect real objects, and as many of their real features as possible.

However, no calculation scheme can fully reflect the set of properties of the

real object (through the vast number of these properties), but it is possible to

make them close to reality. Any mathematical models are under risk of being

compromized, whatever close they might be to reality, if precisely dynamic

characteristics of the machine are unknown. Therefore, identification methods

are required, allowing to determine dissipation and elasticity-and-inertia

characteristics of the machine on the basis of appropriate experiments, the

sought-for parameters being calculated with regard for all more or less J
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FiempOrtant peculiarities of the machine. By practicing these methods
we can

scape the necessity for particularizing and analyzing every one of the
I

machine's characteristics. Parameters thus identified are all the more valuable

due to the fact that they were defined with regard to the selected idealization

of the real object, that is the said parameters were reduced to the selected

dynamic model describing the real system. Whether the selected dynamic model is

adequate to the real model and whether identified parameters are sufficiently

accurate, one can judge by how much measurred parameters of the real object

differ from those calculated in accord with the identified parameters. Crita-

cal rotation frequences, deflection curve forms, peaks of vibration et cetera

can serve as those criterion parameters. Plus, methods of identification can be

used to set the distribution of unbalances along the rotor axis. As the rotor

eccentricities are included in the equations for disturbed motion of the rotor,

it is possible to create identification algorithms of elasticity-and-inertia and

dissipation characteristics along with the rotor eccentricities at the same

time. The theory of flexible rotor balancing pays much attention to the problem

of computing the values of discrete correcting masses for rotors with pre-set
unbalanse, while the angular and linear values of the unbalance itself were

half-neglected. In the meanwhile, it is obvious that one has to know the

unbalance before getting to the task of finding solution to the set of problems

dealing with dynamic strength.

2. METHODS OF BALANCING AND IDENTIFICATION OF DYNAMIC

CHARACTERISTICS OF FLEXIBLE ROTORS

Taking into account rotor flexibility allows to state and solve very impor-

tant (although more complicated) problems which were beyond the rigid rotor

method possibilities_ and first of all it allows to find eccentricities of any

masses placed along the rotor axis. But unbalance is not the value to be direct-

ly measured, instead it has to be calculated through some other directly

measured magnitudes connected with the former one by unknown operators. Hence,

it is evident that the only way to find the flexible rotor unbalances lies

through their identification on the results of operating testing of the machine

or any emulating testing. It is noteworthy that along with unbalances_ elasti-

city-and-inertia and dissipation characteristics as well as all other characte-

ristics of the identification algorithm can be identified. As practice demons-

trated, complex structure rotors being tested at critical frequences get defor-

med in three-dimensional manner rather than in two-dimensional one5 so that the

orthogonality conditions are not valid for them. Therefore, it is necessary to
develop balancing methods on the basis of real deformations at critical

frequences. But_ as the critical frequency operation is not safe and it can

affect the strength and life of the construction_ it is desirable to develop

balancing methods on natural curve form of the rotor, but at non-critical

friquences and with the restricted number of start-ups. There are sertain types

of machines which require balancing only under operation mode with unchanging

frequency value, while others have to be balanced over the full frequency range.

For each case, individual and economically effective balancing methods and

approaches can be employed. Far from all structures would permit the attaching

of testing masses. For such types of machines it is necessary to employ balan-

cing methods free from testing unbalances. As it is connected with considerable

difficulties to obtain complex object's natural oscillation forms_ one should

permanently search for the balancing methods not requiring the said oscillation
forms.

Certain types of designs allow deflection measuring_ while other reject the

possibility absolutly. Therefore, balancing methods are neededj resting on the

deflection measuring and support reactions, housing vibrations et cetera.

La Finally, in a number of cases a method is necessary which combines all !bove-mentioned methods, that is when there is no need to know curve forms and J
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F_scillation to work at critical of rotor rotation, or |
frequences or frequences

o use testing masses and additional start-ups, or even to know riqidity, mass
!

or demping parameters of the rotor - one has only to measure general weight and

external geometric dimensions.

The above-stated material proves a necessity for variuos methods of

flexible rotor balancing depended on specific designing, productive, operating,
economic and other features.

Identification algorithms of rotor characteristics of mass and reqidity as

well as their eccentricities were attained on the basis of solutions for the

differential and integral equations of the oscillations, such as Fredholm's

equations of the 2-nd kind CI], giving a description of non-balanced rotor

motion, the rotor having an arbitrary mass-and-rigidity distribution law.

2 L 2 L

y(z)= 60 "Ira(s)- o((z,s)-(y(s)+e(s) )ds-tD. J'I (s)B(z,s).(y ° (s)+ _ (s))ds,
0

(I)

2 L 2 L

y'(z)=u)._m(s). 3/(z,s).(y(s)+e(s))ds-Ld" f I(s_6(z,s)_(y'(s)+_(s))ds,
0 0

where y(z), y'(z) - is, respectively, deflection and turning angle o_ coordinate

z cross-section of the rotor, y(s), y'(s), m(r), l_s), e(s),_ (s) is, recpecti-

vely, deflection and an_le of turning, linear mass, moment of inertia, radial

and angular eccentricities of the coordinate s cross-section of rotor L,uJ,_,B,_,

6 - respectively, the length, anqular speed, and influence functions.

Two ways are suggested in respect of the search for solution to these

equations. The first one is to approximize the equations with a system of

linear equations, which are convenient for decription of the motion of rotors

with discrete parameters, while the second way is excellent for description of

rotors with distributed parameters using Gilbert-Shmidt theorem for accompli-

shing expansion in a series witn respect to deflection forms of some parameters.

Both ways of finding the solution would lead you to the balancing methods

resting on natural form of deflection at critical rotation frequences. The

difference between them is that the second way is usable after some restrictions

being imposed upon the distribution function,making the said expansion possible,

while the first way is free from these restrictions, and therefore it covers a

wider range of rotor types.

2.1. TESTING MASS BALANCING

There exists more general solution. Taking into account that a defection at

any rotation frequences can be represented by the sum of deflections (which

deflections are multiplyed by some constant factors), it is possible to employ

the method of balancing on natural deflection forms at any other rotation

frequency at which the rotor deflection can be detected; and doing this you can

use a single testing mass system whith a singe start-up of the machine.

Really, carring out the rotor deflection measurments at far-from-critical

frequences (first measurment is made on the rotor with initial unbalance, the

second one-on the rotor with testing unbalances system whose eccentricities are

similar to the measured elasticity line of the rotor) and accomplishing the

expansion of these deflections and eccentricities in series, you can find the

components of eccentricities of the counterbalances, and the whole system e(z).

As balancing frequences are subjected to no restrictions except for as indica-

tors of the rotor deformity, this common method when particularized by critical

frequences, turns into well-known balancing method at critical frequences.

Lr In those cases when natural deflection forms of a rotor are not known, the Ieceived information can be processed by means of expansion in series related t_
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any orthonormal system of fuctions such as sine series as shown below:
Ao n Nkz

y(z)= _ + _-_.A .sin _,

2 k=l k L

]
(2)

Bo n Rkz

h(z)= -- + _--_.B .sin
2 k=1 k L

(3)

y_z)= Do + ._,D -sin OkZ.__

2 k=l k L
, (4)

Fo n nkz
e(z)= +_-_.F .sin _, (5)

2 k=l k L

*

where y(z) and y (z) - is the deflection caused by the initial unbalance, and

the deflection appeared after attaching the testing unbalance system on the

rotor, respectively; h(z) and e(z) - are the systems of testing and initial

eccentricities, respectively; Ai, Bi, Di, Fi - coefficients of the expansions.

Assuming the unbalance-to-deflection ratio for similar expansion members to
be linear, we can obtain:

Fi=AiBi/(Di-Ai).

After the curves of eccentricity projection on the two inter-perpendicular

planes have been determined their vector sum can be found, which allows to

obtain the form of the curve depicting the distribution of the initial eccentri-
cities.

It is noteworthy that you can use not only deflections functions to

implement these methods, but also their derivatives such as cross-section

turning angles, mechanical tensions, and relative deformation; note that the

highest form of unbalance reveals itself in a more apparent manner with the
(i)

deflection derivatives y that with the deflection itself, as can be seen from
the expression

i

(i) q ,_o i nkz

y = _ • _A .k . sin _, i=1,2,3,4.

i k=l k L

L

2.2. BALANCING WITHOUT TESTING MASSES

This group of methods ensues from the first method of finding solution for

Fredholm equation and suggests the eccentricity identification on basis of sta-

tic coefficients of influence. The coefficient of influence is the value of

deflection (or turning angle) of the i-cross-section caused by unity force (or

bending moment) applied to the k-cross-section. The main idea of the method is

like the following: deflections and turning angles or one of these parameters

are measured at noncritical rotation frequencies and their projections on two

inter-perpendicular planes are substituted into equations (6); equations (6) are
solved for unknown projections of eccentricities.

n 2 n 2

y =_ m -_ ,O0.(y + e ) -_ I .B "cD" (y'+_ ),

i k=l k ik k yk k=l k ik k yk (6)

L ]
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F n 2 n 2
y'= _" m .._' .03"(y + e ) -/__. I -_ ,OJ "(y'+_ ),

i k=1 k ik yk k=l k ik k yk

]

Similar equations may be written and solved for the second projection of

deflections.

This group of methods gave birth to some methods, that can be distinguished

by the parameters to be measured such as deflections, turning angles, support

reactions, and vibrations.
2.3. PARAMETRIC IDENTIFICATION OF FLEXIBLE ROTORS

In order to escape the procedures of obtaining static coefficient of

influence as well, a group of identification algorithms was suggested allowing

to find the unknown elasticity-and-inertia characteristics related to the

mathematical model depicting the real rotor.

Let's consider the universally known dependences of the deflection theory:
2

M" (z_u3) = q(z,_O) = m(z).iJ._ .(y(z,Od) + e (z)), (7)

zz y

where bending moment M(z,uJ) at the rotation frequance OJ is equal to

M(z,uD)=K(z,6_).EI(z)i (13)

The rotor axis curvature is determined from the expression

2 3/2

K=y" /(1+(y J) ) 5 (9)

and q(z,CO) - is inertial load, E - is Young's modulus.

Taking into account the resistance forces we can obtain (denoting the total

moment of these forces through f(z,CO)):

f(z,O0) + M(z,CO) = K(z,cO)-EI(z).

Using relations (7-9) we can obtain after some manipulations:
I

...... f" (z,u.)) +o_ (z)'K" (z,(..D) + 2d. (z)-Ke(z,uJ) +
mCz) ZZ 0 .-=_ I Z

2 2

+o_ (z).K(z,OO)-CO.e(z) = OJ.y(z,O.,)),

2 y

(i)

where I d [El (z) ]

oC (z)=

i re(z) i

dz

, i=O, 1,2.

Let's reprezent the function - f" (_,cd)/m(z) as expanded in the series on
zz

z. Setting a finite number for members of the series we assume that the sum of

the abolished members would not violate the pre-set deflection measuring

accuracy. Hence,

L J
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_ (z)'O..) +_ (zl-K" (z,OO) +2o_ (zl-K_(z,,J) +d (z).K(z,,_Ol-
k=O k o zz I z 2

2 2

-60.e (z) =(.O-y(z,_d).

Y

The objective of consequent manipulations is to find the value of fuctions

0r_ (z), k=O, 1,...,n; e (z);_ (z), i=0, I,2 for some fixed point z=a. Thus we

k y i

have n+5 unknown values requiring for their determination the same number of

equations.

Then, we obtain the sought-for system of n+5 equations with the same number

of unknown values, putting down the previous equation for each value of(x) at

the point z=a. j

n k

_" O_ (a)-60 + o¢e (a)oK" (z,cO) t
k=O k j o -.,', j

|
+ 2d (a)- K' (z,_) I +

z=a I z ] _ z=a

2 2

+_ (a)'K(a,uJ)-e (a)_j =O.)-y(a,OJ),

2 j y j j j
j=1,2,...n+5. (10)

When we find the solution for this system we'll be able to determine the

unknown values at the pre-set point. Keeping in mind that this point z=a was

selected arbitrary we create the similar system for any other point z, obtaining

thus the sought-for values at this point.

In this manner we obtain functions e (z) and _ (z) (i=0, i,2).

y i

Carting out the similar manipulations for
unbalance vector:

D(z)=M(z)_ e (z) + e (z) ,

x y

e (z) we obtain the value of the

x

as well as the angle formed by this vector and OY-axis.

tg _ = e (z)/e (z).

x y

Finding the solution for the system of equations gives us not only the

eccentricity value but also_ (z), i=0, I,2 andS" (z), k=O,1,...,n

i k

The known values of _- (z) allow to determine a total moment of resistance,

k

whileo_ give reduced masses and regidities of the rotor

i

z L z

m(z)=M.exp(J (_ /d )dz)/_d (z)of exp (_ (_ /d )du)dz/_ (z),
o I o o o o 1 o o

L
El(z) =d. (z). re(z),

o

J
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Fwhere M - is the of the rotor. |mass

In the most general case, a number of eguations required for determining
!

all unknown values and the same number of rotation frequences at which deflec-

tion values are measured, is equal to n+5. In practice, things are more simple.

If you know the law under which the resistance forces are changing, you

need 4 equations; if this law is accompanied by a law of rigidity changing you

need only 3 equations; with uniform shaft - 2 equations are enough; and if you

know elasticity-and-inertia characteristics you'll need only one equation.

When you find it convenient to use a certain method such as, for example,

the electric strain-gauging for relative deformation measuring and (or) para-

meter stability tracking during the operating period, there are parametric

identification algorithms for eccentricities and flexural rigidity (or eccen-

tricities only) based on the relative deformation being measured, and then the

transition is made to the values of curvature, tension, bending moments, turning

angles and deflections.
2.4. PARAMETRIC IDENTIFICATION ON RELATIVE DEFORMATIONS

Let us use Hocke's law _=_.E and linear differential equation for curve

axis of the rotor

M = El-y" = EI-G/t, (11)

where M - is a bending moment,_- is a relative deformation, t-is the distance

z

from the neutral axis to the fibres for which the _- measurment is taken.

For multidisk rotor which can to any degree of accuracy approximate (by

means of adjusting a number of disks) a rotor with an arbitary mass

distribution, nonbalanced forces are equal to
2

P = m -(e +y )_ , (12)

i i i i

where y can be determined by double integration of y".

i

Bending moment for an arbitrary cross-section of the rotor is equal to the

sum of all moments of external forces (including the support reactions) applied

to a single side (left or right) from the section examined

n

M = ___ b .p (13)

zi k=1 ik k,

where b - coefficlents depending on the distances from the unbalanced forces to

ik

the supports and cross-section being examined; b are calculated in advance.
ik

Accomplishing the _- measurments at some non-critical frequences for n

sections we can determine the values of bending moments for these sections using

(11); then unbalanced forces can be found from (12). If these forces would now

be compensated with the appropriate counterbalances, the balancing would oe

correct only for the anqular speed OO.

To carry out the balancing over the full speed range, you have to determine

eccentricities e using (12). But you can choose another way of searching for
i

the solution.

n

= _.e = M /W =z_b "P /W , (14)1

L i i zi i k=1 ik k i J
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I-w Iihere W = is an axial moment of resistance for section i;

i Ri

Ri - radius of the rotor's cross-section.

The same can be written down differently

n 2

.El /t =_ b .(y + e )cO , i=1,2,...,n

i i i k=1 ik k k

(15)

Now, if the e
k i

times equations then was represented by system (15); this can be obtained by

measuring the values of _ for all sections at some other non-critical angular

speed60 . It can be shown that equations of the (15) type are independent.

2

2.5. STABILITY OF IDENTIFICATION ALGORITHMS

Thus, all balancing methods requiring no testing masses, are based on the

identification of unbalances within the framework of inverse problems of

dynamics. In this connection, the stability of identification algorithms was

researched on the static influence factors known. The whole research is

published in works [4] and [5]. These works also hold all major results.

Fredhom's equation in the matrix form looks like the following (gyroscopic

moments neglected):

2

= A(_ + _ ),c.JO (Ib)

and El values are considered unknown, you have to get two

where _ and _ are vectors of n-dimension; A-square matrix of nxn dimension,

whose elements are the products of the static unfluence coefficients by the

masses of corresponding disks.

This model can be practically applied in cases when small measuring errors

of the values in equetion (16) (the values are measured experimentally) cause

similarly small eccentricity calculation errors.

Taking into account the measuring errors we can represent system (16) in

following form:

2 2

7 +A_ =(UJ +_£0 ).(A+_A) (_ +_ +_ +_),

where Z_- are the measuring errors.

In process of evaluating the relative error of the eccentricity identifi-

cation we can see from the following expression

2

iiL_' II E IIA II I 2 C((EI_ )-A) iIAAII
_< CIA)-C (_ - A)._ + _[(C(A)]- • ...... +

2 2 2 IIAii
Ii_II o_ iI_Ii co II(E/_I-All

2 2

I C((E/CO )-A) ia_i
+ _. C(A)

o02 2 2I_(E/CO )-m_ CO
(where C-is the stipulation number of any square matrix B, which number is equal

to the product of the straight matrix norm by the norm of invers matrix,that is,

L i jC(B)= liBil. IIB II_I,E - is the unit matrix), that the selected model is
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rtaheoretocally stable, but as in reality we can assume
not that measurment errors

re likely to be less than any pre-set values, this problem is reduced to the

task of evaluating the solution accuracy, which is defined by the stipulation

numbers of the matreces involved.

We succeded in trying to disclose the physical sense of the matrix A

stipulation number. It can be evaluated initially by the ratio of squared
maximum and minimum natural rotation frequences for given discrete model. At

this point, a descrepancy has came over: on the one side, trying to approximate

the real rotor by increasing a number of masses, we bring the dynamo moOel

still closer to the real structure; on the other side we increase the

calculation error due to the growth of the stipulation number. Byroscopic

moments (when included in the scheme) also contribute to the growth of the

calculation errors.

This is the sourse for obtaining quantitative relations between balancing

accuracy on the one hand and measuring devices and a number of masses

approximating the real rotor on the other hand. These relations allow to

determine the third factor on the two others. For example, you can select

measuring devices of required accuracy knowing the balancing accuracy an_ the

planes of correction.

To get the required accuracy under a high stipulation number you can use

the possibility to pass from the one identification algorithm to another one,

for example, from system of equations of the fourth special case of the method

described in section 2.3, with only one equation suggested.

3. EXAMPLE

We are going to analyse the results of the research and balancing of

aero-engine compressor rotor on static influence coefficients. The disk-and-drum

type compressor rotor (Fig. l) consists of ten separate disks _earlng operatlng

fan blades on their rims. Factory balancing was carried out in usual way in tne

"rigid rotor" mode for the two correction planes on a Dalanc_ng machine at 80u

rpm with operating frequences within 10000...12500 rpm.
In the process of exploitation some defects emerged such as deformation of

the rear shaft, pin joint breakage, unpermissibly high resonance vibration level

of the whole aero-engine.

Varios calculating techniques for natural oscillation frequences did not

bring any reliable results due to the absence of precise data on the local

rigidities of rotor as well as on the support pliabilities.

To increase the calculating scheme ef÷ectiveness, static tests of a numDer

of rotors of this type were carried out, and precise values of static influence

coefficients were determined over all ten stages. The first critical rotation

frequency for this rotor fixed supports (the frequency was calculated on static
influence coefficients) turned out to be 11000 rpm. Practically this value

coincides with the third peak of vibration of the amplitude-and-frequency

characteristic of the rotor (Fig.2). Peaks of vibration in the reglon of 420U

rpm and 8300 rpm are connected with resonance oscillation of "rigld" rotor on

pliable supports.
To check whether the precise values of the elastlcity-ana-lnertla characte-

ristics (reduced to the selected model) were used effectlveiy,natural osc111atl-

on frequency of this very rotor was calculated, but the calculation scheme

assumed only one general mass-that of the whole rotor (M=115,4 kg) with the
static influence coefficient in the centre-of-mass cross-section. The schemati-

zation error of the calculation of the first natural oscillation frequency

turned out to be not more than 1,5%.

Therefore, we decided to use the said single-mass model for balancing in

the region of the first critical rotation frequency, due to difficulties

_dconnected with attaching correction masses to all stages of the rotor. Maximum I
eflection (y=0,15 mm) value of the eighth stage was assumed for the eccentri- j
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city identification at 10500 rpm. -7
On these data the value of e=0,17-I0 m was found from the expression

2

y=u).m(y+e)_. Correcting mass was brought into on the score of the eighth stage

fan blade, which was replaced. Balancing results are shown on Fig.2.

The carried out research allowed to improve the deslgn and balanclng

technology of the rotor and to eleminate the indicated defects.

Eccentricity identification based on measured deflections of the rotor

using static influence coefficients was also carried out by Brad3ko A.I. [6]

employing a computerized imitation model, laboratory physical moOel anO a

natural rotor of compressor on an accelarating vacuum stand.

Table 1 holds data on mass of stages, static influence coefficients and

deflections of the 5-mass rotor, which he balanced.

2 6 2

For 60 =0,274-10 I/c the following values of eccentrlcities were
obtained:

-6 -6 -6

e =77,4.10 m; e =89,9.10 m; e =I05-I0 m;
I 2 3

-6 -6

• =79-10 m; e =59,5.10 m.
4 5

Correcting masses were attached to all of the five stages.

As a result of the balancing that was carried out, the maxlmum rotor

deflections were diminished almost by 4 times, and housing vibration were

diminished by 2,5 times.

CONCLUSIONS

The problem studying dynamics and high-frequency balanclng of $1exlole

rotor systems can be set and solved as the task of identification of elastlc_ty-

and-inertia characteristics and eccentricities corresponding to a selected

calculating model within the framework of the inverse problem of the oscilation

theory.

On the basis parametric identification of the flexible rotor systems on the

measured vibration parameters of products was developed, providing simultaneous

determining of the mass, rigidity, and demping characteristics of the rotor and
its eccentricities as well.

The identification algorithms obtained on measured parameters of products

allowed to develop three groups of flexible rotor balancing, which don't require

knowing rotor oscillation forms or operating at critical angular speeds:

- with emploing only system of testing masses and a single testlng

start-up;

- without employing testing masses and start-ups, grounding known and

unknown elasticity-and-inertia characteristics.

The accomlished research on stability and accuracy of the suggested

identification algorithms allows to have optimal relatlons Detween the reguxreo

balancing accuracy, measuring instruments and dynamic model of the system.

The obtained results were used for research of dynamic and high-frequency

balancing of a turbopump assembly unit, a turbogenerator, rotors of gas turO1ne

engine compressors, and they allowed to considerably lower the vibration level,

deflections and tensions in the parts of flexible rotor systems, thus increasing

life and reliability of products.

L ]
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Fig. l. The rotor scheme.
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Fig. 2. Amplitude-and-frequency characteristics of tne rotor.

I - before the balancing; 2 - after the balancing

L
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F Table I

Data 4or identification of eccentricities o÷ a

five-masses rotor

N ! masses _ deflections ! static coefflclents of xntiuence !

i m , kg ' -5 ' -9 !

' i i y .10 m ' ,_ . I0 , m/N

' ' i ' ik
f I ! I

! ' ' I 2 3 4 5 !
!

I.! 9,03 ' 7,87 i 9,2 7,4 6,23 4,8 2,77 0

2.! 9,96 ' 11,38 ' 7,45 9,0 8,95 7,3 5,25 !

3.! 12,32 J 11,16 J 5,3 7,85 9,88 8,b b,_ !

4.! 12,53 ' 11,37 u 4,2 7,0 8,62 9,7 8,98 !

5.! 17,6 ' 10,35 I 2,62 4,67 7,6 9,43 10,8 !
....... I
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The problem to ensure the required gualit_ level of products and (or) J9 I_...-

technological processes often becomes more difficult due to that there is no r
/w

general theory for determining the optimal sets of values of the primary

factors, that is, of the output parameters of the parts and units compr:sing an

object and ensuring the correspondance of the object's parameters to the quality

requirements. This is the main reason for a number of years being spent for

finishing complex articles of vital importance.

To create this theory, one has to overcome a number of difficultles ant to

solve the following tasks : creating reliable and stable mathematic models

showing the influence of the primary factors on the output parameters; findlng

of accurate solutions when mathematical models are poorly stipulated; creatlng

new technique of assigning tolerances for primary factors with regard to econo-

mical, technological and other criteria, the technique being grounded on the

solution of the main problem; well-reasoned assignment of nominal values for

primary factors which serve as the basic for creating tolerances. Each of the

above listed tasks is of independent importance. The present work is an attempt

to give solution for this problems. The foregoing problem dealing with guallty

ensuring in mathematically formalized aspect has been calleO the multiple Inver-

se problem.

I. INTRODUCTION

When creating any new machine, mechanism, technological, medical and other

systems and processes one has to start with presenting the original technical

specifications of output parameters.

The above-mentioned technical conditions are normaly represented as rated

values and tolerances of output parameters. Then, creators face the problem of

designing, manufacturing and finishing up the object so that it could carry out

predetermined functions while preserving the output parameters within the range

specified by the technical conditions, thus providing the required level of

quality.

The values of complex object's output parameters depend on the rated values

and tolerances of great number of parts and units, which form the object anO

provide its functional purposes. These units' and components' parameters are

further called as basic parameters or primary factors.

It is well known, that finishing up the object is a long and hard task,

especially for a new one that has no analogues. Of course, it woulO _e mostly

desirable to get quick solutions for the following problems : does the scheme or

construction created meet the specifiend requirements under the suggested

technology; if not, which construction and which technology would satisfy the

objectives?

We have no possibility to analyse the solutions accomplished in diffirent

period. But we have to note, that the steady developtment of sciences and

technique makes this problem up continuosly change, making it more complex but

all the time up-to-date. Its solution is defined by the level of modern scien-

tific achievements. The formalized description of the problem as well as

possible method of its solution are described below.
2. THE STATEMENT OF THE PROBLEM

Let the quality of each object is rated by values of its control output
parameters represented by the vector

Y= { Y , Y ,..... , Y }.

L 1 2 m J
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Fv To provide the required level of quality the ÷ollowxng relatxons snoulo t_e_alid I

[y ] < Y < CY ], i=l,2,...,m, (IJ

i i i

where[y. -_]andlY] are lower and upper limits of the parameter Y, corresponOxngly.
i l i

They are represented by initial technical conditions.

We've going to look for the solution of this problem as a set of values of

the primary factors, which can be represented by following inequalltles:

[x ] < X < IX ], i=l,2,...,n. (2)
i i i

The belonging of the vector to this set has to provide the ÷ulfllxng ot the

restrictions (I), which are imposed on the output parameters.

We've call the problem, which has just been formulated as the multiple

inverse problem. This term emphasizes that the solution of the proOlem suggests

the determination of the set of points (region) in the n-dlmens_onal space ot

the primary factors. This circumstance differs it from the polnt Inverse

problems, which are traditionally solved in many technical bronches. In the

point inverse problem only one vector of the primary factors and (or) one

collection of model's parameters have to be determined, if the vector _ is set

beforehand.

3. THE REDUCTION TO THE PROBLEM OF THE OPTIMIZATION

The above mentioned vector _ is completely defineO by the vector o÷ the

primary factors X={X ,X ,...,X } and the operator

I 2 n

Y = f(X , X ,...,X ; B , B ,..., B ),

l 2 n 1 2 k

(3)

which carries out connectioh between the said vectors. The structure of _ anO

the vector of parameters of the mathematical model B , B ,..., B corresponds
I 2 k

to the phisical nature of the object and its functional destination.

As a rule, the industrial, physical, economical and other considerations

allow to indicate the widest bounderies of the set of the possible values of the

primary factors. Then, the relations (3) enriched with these new bounderies can

be presented as a system

I = f (X , X ,..., X ; B , B ,..., B ), i=l,2,...,m, (4)

Yi i 1 2 n I 2 k

C < X < D , i=1,2,...,n,

i i i

keeping in mind the co-ordinate form of the operator (3).

It should be noted, that the structure of the functions and the sets of

the primary factors" values may be various. For example, one of the primary

factors X can have the descrete or even finite set of values. Then, this fact
i

must be reflected in (41 by such relations as X = 1,2,...,N.

i

The system (4) de÷ermines some curved region in the n-O_menslonal space of

the primary factors. In geometrical sense, if you'd fan_ some sets in the ,orm

of (2), you would inscribe n-dimensional parallelepiped in the sat0 curveo

region.

L This has more than solution due to the fact that se_
i

problem one countless
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pof this kind of parallelepipeds may be inscribed into the above-mentioned regi-|
n. Every one of them can be entirely determined by two conditions. The first

one comprises the point _ = {X , X ,..., X }
0 10 20 no

which is known to belong to the region and corresponds to one of the oOject's

basic version with these nominal inner characteristics. The seconO condlt_on Is

represented by set of lower _ and upper.O, deviations of the primary factors

i i

from their basic values corresponding to the boundaries of the tolerance zones

of the primary factors, that is to the technology chosen.

The followingrelations are evident here:

X -0_ < X < X +_I , i=1,2,...,n. (5)

io i i io i

But not every solution (5) of the problem formulated above can be realized

in practice because of various constructive, technological, economical and other

considerations. The high cost of production or the absense of the necessary

equipment, components, materials, performers of required qualification,

peculiarities of the object can serve the sourses of the troubles.

These considerations can be analytically formulated by the cr:terla

expressed through the deviations of the primary factors from their _aslc values

F = F (_ , _ ,...,E ,_'_ ,.(_ ,...,fl ), i=1,2,...,U. (b)

i i 1 2 n 1 2 n

It is evident that of the above mentioned parallelepipeds the most acceptaOle

for the practical implementation are those, in which the criteria (e) or some o÷

them are optimized and another of the criteria are added to the restrict:ons _n
(4).

Various criteria of the tolerances optimization are possi_Je. The cost

function is the most important. Sinse this functional dependence on the current

tolerance values is usually unknown, it might be possible to replace it by in

some sense equivalent criteria. For example, it might be possible to demand the

maximizing of every or some tolerances.

Then the criteria (6) will look like following

max (_ , S ,...,_- ,_ ,f_ ,...,._ ) -4, max.

1 2 n 1 2 n

Thus, the problem of providing the pre-determined level of the object's quality

is drawn to the multicriteria optimization problem with the certain
restrictions. The deviations_ and_ are to be determined in this problem so

i i

that the restrictions (I) are valid for the region (5).

4. NECESSARY POINTS OF THE SOLUTION

The way to the solution of the formulated problem is connected with some

difficulties. The overcoming of these difficulties has to be the necessary

points of the solution.

4.1. MATHEMATICAL MODELLING

In practice there are cases, when the model required for writing down the

functional part of the restrictions (1) is known. But as a rule, complacateO

objects can have either unknown (inaccurate) parameters or unknown structure or

both. Therefore it is necessary to develop an easy-operated approach to the

task of setting functional dependences of primary factors and output parameters

having reliable coefficients reduced to the object model.

The algorithm-creating technique for urgent mathematical modelling can be

ground on the active-controlled influence on the object.

L Let the calculated model of the experimental sample be represented as !J
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,{Yi = fii=1,2,...,L.(Xl,X ,...,X;2 n BI,B ,...2 ,Bk )' (7)

At the beginning we suppose that the structures of the functions ÷i as

known, but parameters B are not.

i

If the output parameters' values and some primary factors are substltuteo

in (7) then k of unknown values of primary factors and j of coefflcxents of the

model should satisfy (7) together with the substituted values. As a rule, the

system (7) is not completely defermined (that is k+j>L) and admlts ot countless

set of solutions. However, keeping in mind that the object operates and really

exists, it would be natural to find the solution fully responsive to the given

object. Hence, it is necessary to complete the problem by means of some

additional experiments. The method of test parameters suggested here is bound to

provide the afore mentioned completion.

To put it into practice, k+j-L additional components should be employed or

varied in the object under examination, or the object should be exposed to the

same number of the test modes of functioning, the modes belonging to the set of

modes specified by initial technical conditions. Thus, the operation of the

object is regulated in active manner. The influence of the said test components

(or modes) in accord with components whose parameters are being identlfied,

allow the measuring of missing values of the output parameters make the system

(7) complete, and identify the missing factors and coefficients of the moOel,

that is to find the solution of the inverse point problem.

In case the structure of functions f is unknown we recommend to

i

disintegrate them by series according to any complete system of functions, for
example, the series

Y =B + _-'B .X + _ B "X'X + ..., (B_

i io j ij j j,k ijk j k

i = 1,2,...,L

and to identify coefficients by several sequential stages. At the beginnlng, we

suggest to determine the coefficients of linear approximation using required

quantity of test parameters. Then, after employing additional test parameters,

the functions Yi are selected which are adequate to the object. For the rest of

Yi functions the square and higher appoximation are considered. It is easy to

show that the process is converging and the number of stages usually does not
exceed two or three.

Putting the method into practice one has to start with considering the
output parameters of large units as primary factors and to sort out those

vitally influencing the functioning of the object. Then, t_e functional Oepen-
dence of sorted out characteristics on the smaller units is ascerta_neO _n

similar manner and so on. This approach based on the principle of hierarchy
allows to operatively adjust the model to the object under examination with

regard to the degree of its idealization and functioning conditions, and

eliminates the necessity of the registration and analysis of the inessential
primary factors.

However, the hierarchical principle of modelling can be employed only if

the output parameters of separate units can be measured at every cascade. If

this possibility is not provided by the design the method of multy-cascaOe

modelling can be used. Let us assume that the interconnect_on exists between

separate units (cascade) and an output parameter, that is we know the functlon
Y = f(_, _ ,..., _ ), where _ = _ (X , X ,..., × ) - output parameter of! |

L 1 2 s i i ii i2 it _|
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unit. Then, fixing the values of the primary factors of all cascaOes out one, Ind measuring the output parameter Y, we can create the model of every cascaOe

and combine them into the common model of the object capable to varylng

parameters of all units [I].

We would like to emphasize that this manner of mathematical moOelllng is _n

itself a particular case of the inverse problem solution.
4.2. PROVIDING THE MODEL STABILITY

However models are practically important only if the faults of tne

experimental input information are not likely to cause intoleraoly large taunts

of the values being determined, that is the models should be stable. In [2] it

is shown how the stability of the model should be determined with regard to all

or some factors, as well as the necessary proof is placed to estimate the

relative fault of parameters identified with the help of linear model:

2

I[_X [1 / il_ J[_ C(A). Ii_;[ /_[_[1 ÷ [C(A)]'iI_AII / iiA!i. (9)

This estimation, thus, is represented by the number of stipulation C(A_

and the faults of characteristics and elements A being measured. Estlmat_on _9_

allows to explain the decreasing stability of the model while the degree of A is

growing. In other words, it states the necessity to search the compromize

between the desire to give thorough description of the object using large number

of factors and ensuring the stability of the model. The estimation (9) showes

that the model can be regularized not only by way of influencing the A operatorj

which in real production environments can not always be available for the

various reasons. Not less efficient regularization can be achieved by way of

influencing the V vector of parameters being measured_ which method is baseO on

the statistical nature of the vector. To achieve this, you have to carry out a

great number of Y measurments, insert the value of the vector into the calculated

model and count the realization of every one of identified parameters.

Mathematical expectations of parameters values calculated on the base of these

realizations are assumed as true values of these parameters. The estimation of

the number of realizations sufficient to ensure the accuracy of the method

2 2 2

n _ t °(C(A),_ / _l_11 + C (A).3(_ /ll All ) /_ (I0)

I 2

(where _I , ___2 - mean root squere deviations of the vector components and

matrex A correspondingly, t - Student's coefficient) shows that the described

method of statistical solution is efficient when coupled with methods of

influencing the A operator [2].

Estimation (9) places interest in pure practical aspect, since it states

the functional interdependence of economical factors (accuracy of the method and

accuracy of measuring facilities), thus making it possible to choose one of

these requirements to provide the two others set apriory.

5. PROBLEMS, CONNECTED WITH OPTIMIZATION

The concrete optimizing method can be chosen from the sufficiently wide

collection of the detailly developed optimizing algorithms. It is evident that

the results of the criteria optimization depends on the basic version chosen,

i.e. on the point Xo. Here we offer some recommendations connected with it.

5.1. CONSTRUCTING THE REGIONS

We suggest that the algorithm is implemented through making proper regions

spreading from basic point with step-by-step checking the validity of the

restrictions (I). This basic point often can be determined out of physlcal or

practical considerations. But there are cases when this point is uknown_ and the

problem of the seeking becomes very difficult one.

5.2. ON CHOISE OF THE BASIC POINTS

Lo Because of great number of random and unpredictable situations that may |ccur during the manufacturing and exploiting of the object, and due to non- J
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tability of properties of construction materials, the characteristics of the
bject may be treated as random values. Then we can estimate the true values m

using the method of confidential intervals [3], provided that the law of

distribution is known.

For a long time, the normal distribution law or its modification was

considered the best approximation for which the majority of statistical criteria

and estimations can be applied. However, a lot of practical problems have turned

up lately which give strong evidences that the normal distribution law is not so

universal as it was thought. The situations emerging during the study of real

process bear evidences that a good deal of the object's parameters'

distributions deviate from the normal distribution, moreover they often have
more than one summit of the probabilities' function densities. Therefore the

physical essence and new technical schemes of the processes of this sort are

disclosed in [4]. The schemes are based on the method of representation of each

random value selection in the form of the set of subselections, comOlned by some

dominant causes for diversity of values of the quantity under examination. Here

some examples of such kind of situations are illustraited and it is shown that

more often than not the situations of this type can be depicted by Gauss

functions' linear combinations with some weight coefficients Pi assigned to

estimate the contribution of each subselection to total selection of the
realized random values.

f(X; a , a ,...a ; S , S ,..., S ; P , P ,...P )=

1 2 n I 2 n I 2 n

-I -0,5 2 2
_-_.P S . (2;]) -exp ( - (×-a) /2S ).

i i i i i
(11)

In [4], various methods for finding the unknown parameters of the functlon

(11) are described, depended on the required accuracy of calculation and the

selected criterion of approximation histograms. The values thus determited

define the integral function which in turn makes it possible to write down the
equations for locating the permissible IX] value:

-1 -0,5 [x] 2 2

W = P{X < [X]} =/_. P.S • (2N) • Jexp(-(X - a ) /2S )dX. (12)
i i i __._ i i

When processing the experimental data one has employ well-founded technique for

compiling histograms to prevent, on the one hand, the probability of missing

considerable part of the distribution by too large spacing intervals, or having

to deal with unimportant subselections which may turn up under too small spacing

intervals, on the other hand. It is good idea to start making a histogram with

the smallest possible spacing interval which can be compared with the measuring

accuracy, and to approximize the histogram using function (11) having the number

of additieves equal to the number of spacing intervals. The already known weight

parts which turned out to be less than pre-set probability 0/= I - W give you

an indication of unimportant subselections joined with the contiguous

subselections. Then, the spacing interval tends to gradually increase, anO the

whole procedure is carried out over again untili each weight part is made
comparable with_ .

And now the recommendation on the selection of the basic point rest on the

following ideas. As basic point we can select the point belongxng to the space of
primary ÷actors and having one of the mathematical expectation as the first co-

ordinate, the mathematical expectation being that of random value depicting the
distribution of the first primary factor. Analogically, the second co-ordinate

will be connected in the similar way with the second primary factor, and so on.J
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r 5.3. CHECKING THE VALIDITY OF THE RESTRICTIONS I
|

! When making regions spreading from basic point checking the validity of the

restrictions (I) during each step of the optimization can be accomplished on the

set of uniformly distributed points belonging to the created region of points.

But in some practical situations this checking technique can be simplified. For

example, when partial derivatives of the functions (3) have invarriable signs

then the checking may be accomplished only for the tops of the region.
5.4. CHOOSING THE OPTIMAL BASIC VERSION

As the number of the basic points can be more than one it is natural to

realise the optimizing algorithm for each of the possible basic versions

separately, and to choose the most optimal of them as regards to cr_terla (0_.
6. POSSIBLE APPLICATIONS

This approach which generally formalizes the problem of optimal ensuring of

technical conditions requirements for output parameters of the article or

technological process allows, in the first place, to ascertain the interl_nkage

of problems connected with selection of the object's basic verslon determxneo by

rated values of its primary factors, with the problem of setting dis_gnlng and

technological tolerances for them depended on the restrictions of the technical

conditions for the object output parameters. This practicularly provides for the

study of various selection possibilities concerning the already known and

finished units, processes and technological decisions which might be utilized in

the article or technological process being created.

Thus we are granted the possibility of formulating and solving the problem

of synthesizing some of the design versions of articles, having optimal

sensetivity towards manufacturing and operational deviations of their primary

factors, that is we can directly link the selection of the object basic version

to specific features of its practical implementation.

Secondly, this approach allows of formalizing a great quantlty of Important

promiscuous special problems of design, manufacturing and testing procedures

regardless of the technical branch of application.

The same conditions are capable of procuring recommendations for setting

tolerances for both primary factors of the article as a whole and its separate

units during design, manufacturing and finishing procedures. It allows also o$

carrying out the selective machine assembly by way of sorting out the object's

components and materials by real values of their parameters which are sure to
create the most favourable combinations.

When it comes to serial production it is possible by means of multlple

inverse problem with regard to statistical origin of parameters, to effect

diagnostics dealing with the yield (or the percentage of waste artlcles} and

allowing of setting conditions providing the technical conditions requirements.

The same approach is effective when solving other types of problems. For

instance, we can check the possibility of attaining the desired values of all or

some output parameters under given design or technological conditions, which

stands for finding a solution of a relative multiple inverse problem. If the
solution doesn't exist or it's out of reasonable limits in designer's or

productive engineer's point of view, that means that the given ooject fa_Is to

meet the requirements if technical conditions therefore it is necessary to take

to searching for completely new designing or technological decisions based on

different principles.

This approach is also good to cover not only the article as a whole but xts

components as well.

Thus the approach under examination is a natural reflection of the set of

real situations emerging at the stage of design, manufactoring and finishing

articles.

7. EXAMPLE dL To check up the versatality of the above describe_ theory multaple Invers
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t

roblem was formuleted and solved, the problem being applied to varaous orancnes If technical engineering including:

- providing the strength and air-water proof quality for radioelectronic

elements [5];

- enhancing the stability of the output parameters of the articles of the

secondary radiodetection (airplane answering devices) [1];

- lowering to preset level of vibrating activity of gas-turbine engines and

turbopump assembly unites [2,6-8,11];

- assigning of well-reasoned tolerances for the residual unbalance during

balansing and assembling of rotors [4,9];

- developing of balancing technique for flexible rotors [10].

Each of the above-listed applications is complex enough in itself, and it

would take more time and space than we have, to give their full descr_ptlon here.

Therefore, the present work is an attempt to throw light upon general ways o÷

finding solutions to multiple inverse problem, and the new approach to the

problem is illustrated by brief example showing the way to lower vibrating

activity of a turbopump assembly unit. We also supplyed the example with

necessary references to thesources containing more detailed description of the

statements placed here.

Turbopump assembly units with high-speed rotors are widely used in varius

branches of industry including rocket production, aircraft building, chemical

industry and so on. As it has been found out that the device-under-test had

enhanced vibration caused by rotor unbalance, the task was to lower the

vibration and the rotor deformation; to put the rotor bearlngs loaO witnxn the

threshold of 300 N, in particular, by way of assigning the appropriate reslaual

values of eccentricity for the most massive parts attached to the rotor shaft.

7.1. GETTING AN EFFECTIVE MATHEMATICAL MODEL

The turbopump assembly unit shaft, rotating in two supporting bearlngs,

carries two compressor impellers and axial turbine disk. These are very points

of heavy masses fraught with possible unbalance; which consideration served a

basic reason for choosing the "three-masses" calculation scheme shown on Fig. l.

To make the mathematical model of the rotor oscillations, corresponding to

this scheme, more effective, we have accomplished the identification of the

rotor parameters includinq stiffness, and mass and inertia characteristics,

using the method of testing parameters which in our case, are four dafferent

values of the speed of rotation 60 , where j = 1,2,3,4.

J

The rotation of the rotor is described with the help of the integral-and-

differential equations of the bending theory [10]. The resulting equations for

the three cross-sections of the rotor link the unknown values of stiffness El,

mass m and eccentricity e with the rotor deflection y (the equations being

created for the two inter-perpendicular planes).
2 2

•K" (z,t_) + 2_ -K'(z,OJ ) +_.K(z,_) - e -¢_J =00 .Y, j = 1,2,3,4, (13)

0 zz j 1 z j 2 j y j j

where I

i i m i

dz

, i = 0,1,2, (14)

I

2 3/2

K(z,u2) = y"/(l+(y') ) - is the curvature of the rotor elastic curve,

z - is the axial co-ordinate of a cross-section. I

Then, we accomplished the measurments of the diflect_on values at t_e aDov
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Fmentioned points for the whole range of the rotation frequency (in our case |
0-18000 rpm), and selected four specific values - 14100,15000_15600, and I0000

rpm.
After that, two components of the defections at each of the points (each

component being a projection to one of the said inter-perpendicular planes) were

substituted to the two systems of equations (13).
7.2. CHECKING UP THE STIPULATION AND PROVIDING THE ACCURACY

OF SOLUTIONS

Before dealing with the system of equations (13) we calculated their

stipulation numbers, which numbers turned out to be within the range of

3,2...6,7.

Consequently, [13] the expected error of the solution might be as high as

134% provided that the 15% measuring devices accuracy is achieved. To rise the

accuracy of calculation we employed our statistical method for ensuring

stability of mathematical models [2]. In our example, the measuring operation

was carried out over 50 times, the result being that we found the mathematical

expectations of the values and phases of the deflections. The averaged values

were substituted to the equations (13). The solution brought us the followlng

results:

For the first cross- section:

-6 -6 4 2

e = -5.10 m; e =5,84-10 m;_ = 185,65 m /s ;

x y 0

3 2

= 270,37 m /s .

I

For the second cross-section:

-6 -6

• = -9_0,I0 m;e = I_7.10 m;_

x y 0
3 2

o_ = -247,18 m /s .

I

For the third cross-section:

-6 -6

• = -6,2-10 m; e = 30-10 m;_

x y 0

3 2

= 680 m /s .

I

4 2

= 710,67 m /s ;

4 2

= 280,83 m /s ;

The values of_ and_ , thus found for each of the cross-sections, made it

0 1

possible to determine the values of the rotor reduced mass and stiffness

L z

/e×p( J(o_ /_ )du)dz/o_, El =o_ .m,
0 0 I 0 0 0

M = 4_05 kg.
1

according to the formulae

Z

m = M-exp( _ /_ dz)/ (d

0 I 0 0

where M is the rotor mass.

For the first cross-section:

2

El = 4147 N/m ; m

I I

-2

= 0,22.10 kg/m;

I J
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F For the second cross-section:
-2

El = 15954 N/m ; m = 0,2-10 kg/m; M = 2,74 kg.

2 2 2

For the third cross-section:

-2

El = 23988 N/m ; m = 0,83.10 kg/m; M = 11 kg.

3 3 3

These values of El and m in their turn, allowed us to calculate the

critical frequences of the rotor oscillations for the first and second forms

correspondingly:

n = 16600 rpm, n = 25080 rpm.

I 2

Experimentally measured value was 16100 rpm, which means that the

calculation error did not exceed 3%.

7.3. FINDING PERMISSABLE VALUES FOR ACCENTRICITIES OF THE

IMPELLERS AND THE TURBINE DISK

Let us denote _= {_ , _ ,...,_ } - vector, whose coordinates are

I 2 n

represented with the product of disk masses by their residual eccentrici-
ties.

The vector of residual deflection values should satisfy the equation

2 2

= OJ.A ÷ ,

where A' - matrix of pliabilities _ , created by means of the Mohr metnod

ik

[12] on the basis of already known values of stiffness El, A - matrix compose0

of the products _ -M , where M - mass of the disks.

ik k k

Hence,

2 2 -I

= C0'(E -60.A) • A'_ ,
where E is unit matrix.

Now, the equation for the_support reactions looks like

R = _ b .(M.y +_ )/_,i = 1,2.
i k ik i i i

where b - are known values represented through distances from the disks
ik

fitting planes to the corresponding support plane. The following inequalities

serve here as conditions of the (I) type:

I R I < 300 N, i= 1,2. (15)
i

The acceptable value of defections is limited to 0, I mm value.

The criteria of optimization are

_ max, i = 112,3.

i

m

It is easy to understand that the basic point A represents the ideal

0

situation, that is when rated values of the eccentricity equals to 0
( _" = { O; O; 0}).

0

L When trying to create the three-measured expansior_ around this point it i_
I
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F_uite satisfactory to check the conditions (15) for frequences [
rotation in the

egion of critical value 16000 rpm.

We accomplished all calculations resting on the algorithm set forth in

[13], and found out that the residual eccentricity values should not exceed

0,0008 mm.

Considering that it would be extremely difficult to put this condition into

practice, and costly too (plus loss of balancing during operation possible), it
has been decided that with given construction of the assembly unit the above-

formulated problem has no practical solution and some other method should be

used for lowering vibrating activity of the unit.

Particularly, we suggested and realized the high-frequency balanclng

technique comprising the rotor eccentricities identification on the basis of

deflections measured at the three sections, and compensation of the deflections

by counterbalances.

While so doing we determined the values of unbalances Di for rotor

under-test using already known values of the eccentricity projections

I/e 2 2 _
Di=M +e

iV x i yi

Also, orientation of the vectors in relation to a projection plane Xs

represented by angles

= arctg (e / e )
i yi xi

It's turn out that D = 273 g.cm, _ = 95 ;
I I

0 0

D = 2,48 g.cm, _ = 170 ; D =30,6 g.cm, _ =102,3

2 2 3 3

Fig.2. represents values of the rotor deflection for the section Ill

experimentally measured in initial state and after applying three correcting

counterbalances used as compensators, whose values have just been calculated.

In general, the balancing procedure gave the following results: the rotor

deflections, withing the range of frequences 2000-18000 rpm. Iowerd by 6 tlmes,

vibration amplitude of supports lowered by 4 times, support reactions lowered by

4,5 times, the rotor shaft static strains fell by 3,5 times, while dynamic

strains-by 3,5 times.
8. SUMMARY

The results of the accomplished are characterized w_tn a concrete tendency

for industrial application and can be used for: chosing optimal basic verslons

of objects, components and parts; assigning optimal, and economlcally and

technologically reasonable tolerances for functional parameters of parts and

units being produced; assigning optimal operating conditions for assembling and

adjusting technological processes; accomplishing diagnostic of technical

condition of objects and their components; identifying real values of the

parameters of objects, and the distribution laws for the errors of creatang of

parameters. Finding solutions to this problem allows to cut investments and save

time for finishing objects and controlling their quality in the process of

manufacturing, and on the basis of pre-set criteria, to rate t_e output

parameters (quality characteristics) of the object as a whole and its components

and parts as well.
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[- ,',rl

Fig. 1. The scheme of the rotor preparation

I. strain resistors, 2. sensors of movements, 3. vibration sensors

7

Fig.2. The dependence of the rotor deflections on motion frequency _lll cross-

section). I - before balancing, 2 - after balancing
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| OPTIMAL INTERACTION OF INDENTER WITH INHOMOGENEOUS PLATE

ABSTRACT

Valery N. Aptukov

Institute o/ Continuous Media Mechanics
UB o/ the Acuz_e_y o� Sciences USSR,
Koro[eva st., I, Pern, 614061, USSR

N92- 1396  /

Consideration is given to a new class of problems dealing
with an optimal design of inhomogeneous plate durlng dynamic pene-
tration of the rigid indenter. The quality criterion of the pro-
cess is defined by the specific mass of the target, which absorbs
the given kinetic energy of the indenter. Parameters of control
are expressed in terms of mechanical characteristics, i.e. distri-
bution of density p and the related hardness H across the plate
thickness. The maximum principle of Pontryagin are used to search
for piece-wise continuous conirol function. With consideration of
impact conditions and characteristics for a given class of mate-
rial an optimal target structure criterion has been estimated for
engineering application.

INTRODUCTION

The problem of searching for mechanical characteristics of
inhomogeneous plate subject to impact of a rigid body has been
stated first in [I] in the framework of theory of optimal control.
This study employs Pontryagin principle of maximum [2] to obtain
an optimal structure for a plate with minimal thickness and
prescribed specific mass. At present a considerable attention is
focused on the problem of structure optimization as applied to the
case of inhomogeneous plate of a minimal specific mass using both
linear H(pD = Ap + B [3] and nonlinear H(p) = ¢_pD [4] relations.
An approximate approach to the analysis of penetration process,
based on the emplrical relation [5] allows to obtain rather simple
criteria for structure optimization.

ANALYSIS

I. Formatat_on o/ the pro)lea.

According to the applied theory of the plate specific resis-
tance p , penetration of the rigid indenter can be expressed [5]

as p = H ÷ _,o_ 2 £1.1)

where H is dynamic hardness; k is the shape factor of the indenter
head (in case of a tapered head N=sin2a, _ is a half angle of the
cone opening); v is the current penetration rate.

The equation of motion forLlndenter is given as [3]

(I/2DM dCv2D/dL : -2_ _ p(x,L) rC_Darf_D/a_ d_, C1.2)
o

_here L is the current penetration depth; r(_) is the expression
or generating line of axisymmetrical Indenter; _ = i-x is the j
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_oordinate relative to the tip of the indenter (fig. l). 7
Distributions of density and hardness are assumea to meet the

following requirements

___, _ = { _x): p_ p(x) _ P2' (xg [O,Lk]) ) ,

H_, _ = (H(x). HI _ H(x) _ Hi, (xg [O,LkT) ) (1.3)

We shall restrict ourselves to a class of materials for which
there exists a one-to-one mapping _ of the set Q in the set _ .

H = ioCp), p1_ HI , p2_ H2 with a_/Op > O. According to the quality

criterion stated below, materials inconsistent with the latter
conditions are considered inadequate. Further it is assumed that
each of the materials is plastic enough and impact velocities lie
within the range, in which applicatlon of the relation (i 2)
proved to be valid.

The boundary conditions for (1.2) imply that the indenter
moves with the initial penetration rate _(h:O) : _ and reaches

0

some unknown finite penetration depth ik for which vCi k) = O.

We shall concentrate on the case with the plate thickness being

equal to the finite penetration depth b = ik .

Specific mass of such target is taken as the principle crite-

rion of quality _ u_

J : sin _ f Ffx) dx _ (1.4)
___ _ o J

2. Conical tr_Zenter. LtTzear relation H : _p_.

Let us consider the technique of applying the maximum prin-
ciple [2] to a number of particular problems. Within the framework
of theory of optimal control the problem may be expressed in the
form of _ {y'_ u2, y_ y3) is the vector o_ phase coordinates, t

i is the time analog )
dyl/dt : -E [(f/2)B t2 + CA + _y,)y2],

dv2/dt : y3
where E : (4n/M) (tgoO 2. ' dy3/dt : p' C2. l)

In the following it is reasonable to introduce additional
phase coordinates y2 _3 since the right side of the equation of
motion involves an explicit form of functional (1.3), leading to
condition d_o/dt= -ah/o_y°# O.

The mapping H = _(p) is assumed in the form of linear appro-
ximation

A = (H2- H,)/(p- p,), = ,P_ - H p)/(p- p_), (2.2)

At the initial moment of time the vector of phase coordinates

remains fixed t = 0 ' y*m Yo' = = 0. The finite vector value

9k belongs to a smooth, two-dimensional variety 5k Euclidean space
with dimension n = 3

Sk FkCyk' Yk' Yk _k : 0 (2.3)

_The condition of transversality for the vector of conjugate vari-.bles _ yields two relations
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[- . ,t = t k I_2 = 0 1_3 = 0

The equation for the conjugate variables takes the form

d_,/dt=E]_yz_t , dv/2/dt=ECA + _yt._v/t , d_3/dt=-_u 2 (2.5.3

Optimization of the process p°,y° requires the existence of

such nontrivial constant _oS 0 and vector-function _Ct) with

will allow to meet the maximum conditioo [a]
max hC_CtD,yCtD,t,p5 = hC_KtD,gCtD,t,p°_ C2. B)
_n

and transversality condition

hC_CtkD,yCtk),tk,p°Ctk 9 = _ _nCtk)qn Ca. 7)
n

According to C2.4) the right-hand side of C2.7) is equal
to zero.

Hamiltonian operator is expressed as

h = +cA+ + cz.8 

Integration of the system (2.5) combined with conditions
(2.43, (2.73 enables one to define behavior of Hamiltonian h in

terms of linear function of p with coefficient _ = _o+_3.

3. CyLtndrtcat tnie_ter mtth a conic head o/ the hetaht 6.
Linear relation H = _Zp3.

The system of differential equations describing
is divided into two parts:

-Z [C_/23B t 2 + CA + I_y'3y2], t < 6
dyt ldt l -E [ CI /23 B 62 + CA + kty_ 3y2 ] , t > 5 ,

the process

to6

- 6_t-69, t > 6 ,

C3.13

pet), t c6dya/dt = pCt.) - #Kt-6), t > 6,

Hamiltonian operator takes the form

h = C_o+_.),c('tD- _E[C_/2_Bt" +CA + I_y_.)y _] + _pzy', for t < 6 ;

h = C_o+_ .)pCt.) - C6_- v/a_)pCt-6.) + _zy _ -
C3. _.)f-

-- _1 _,C,//2_B_ _ "_CA "_ _yl ._22, , for _ >_. _
L J

The equations for the conjugate variables is

._3 ytg[O, tkJ. It is assumed that the value y_

expressed as
is such that

]
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_ondition Lk> 6 is satisfied automatically.

4. CyLindrical tn_rtter atth a /[at end-face.
Won[tnear relation H = _p.).

The equation of motion for indenter and Hamiltonian are writ-
ten, respectively as

dy I /dt = -E [ _o( p) + pyl ] , C4.1)

h = _o p - _IE[_Cp) + pyl] C4.2)

Using differential equation for conjugate variables and
transversal ity condition

; 2

,: I + y:/Z, _= : /Z, Z : exp (-E ItkpdT) <4.4)
t

For a piecewise-linear relation _Cp) Csee fig, 2) Hamiltonian
is transformed to a piecewise-linear function p wzth the slope

-I + CZpk/CB+APk))CA+y_ ) f:_--[p_ ,p,1
-I + CZPk/CB ' +DPk)PCD+y* 9, isc-_Cp,,p21 (4.5)

For nonlinear relation ¢£p)=B+Ap n (A>O,n>O) Hamiltonian reduces to

h : _Cp) + B_ _ : I + fnZCy'+ Ap"-'92 y

The conditions assumed for existence of continuous
may be expressed as

(ah/ap) Jp=p ° _ + A _'n 2(P°)n-' : 0

ca'h/ap=) I : A r_CrL-l.)_cp°_ _-" < 0
p=pO n!

/ : pk/CB+Ap_) C4.8)
solutions

(4.7)

C4.89

Following [4.7) one gets:

po : -_. �CA _. .) , a : I/Crt-I)

Differentiation of c4. g)? using C4.1) gives

C4. g)

S : E/n C4.10)

RESULTS

Without going into details we shall examine some qualitative
results obtained for a number of special cases.

I. Ltr_eo_ relation H : _p3.

From the analysis of the system C2.19,C2.5),C2.89 we can draw

he following qualitative conclusions :
(i) There is an interval (t,,t k] in which the optimal functi- J
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_n has the form of pc = _ , i.e. the rear layer should be made of]

more light and less hardness materials;

(ii) The function pc = p, is optimal within the entire

interval (to,Lk], if B >_ 0;

(iii) In the case of B < 0 the structure of target should be

double layer with the front lay being made of hard and heavy mate-
rial. In this case a relay-type control is realized.

Similar results have been obtained for the case (3.1),(3.2).

A general phase diagram of the optimal structure is shown in

fig. 3.

Here u, is the velocity at which ik = 6, where 6 the height

of the indenter head. It is seen that the structure largely de-

pends on the parameter B. If the specific hardness Q = H/p is

assumed the measure of material quality, then, according to (2.2),
the condition B<O identifies the maximum quality of hea_vy material

<p2,H2). In this case a double layer plate is an optimal structure

for a target. Contrary when u > u an optimal structure may be
' i o

represented by a homogeneous plate made from a light material.

2. Nonlinear reLatLon H = ¢Zp).

(i) For a piece-wise linear function H(p) as plotted in

fig._ the problem is solved for three different materials. The
'phase-diagram" of the optimal structure is shown in fig. 4, where

a : -(p /p2)(p2-p,)/(p-p), X = (ik/6)a-/. As it follows from the

observable scale effect, the optimal structure for a given set of

materials (B, ,B ) depends on the relation ik/6.

(ii) For nonlinear dependence H(p) the function of the opti-

mal control may not include discontinuities. Inequality (4.8) is

valid for n <I in the neighborhood of (L.,Lk], O<L,<L k. The

procedure of qualitative estimating the type of solution to the

equation (4.10) may be as follows. The first approximation (the

expression in square brackets in (4.10) is constant) follows from

ap°/at : -GCp°Da as Cp°)TM = p-_+ GCL-t _ . This solution

is found to be exact for B =0. The second approximation has a more
complicated form. The results are shown in fig. S. The position

(coordinate) of the point [ is calculated numerically and may

coincide with the starting point of the process.
The results of present investigation allow to make a prompt

qualitative estimation of the optimal target structure. The best

ratio of layers in a double-layer target may be calculated
numerically by solving the equation of motion for indenter.

REFERENCES

I. Aptukov,V.N., Pozdeev,A.A. (ig82)"Some

technology and strength of structures",
cybernetics, I, 47-55 (in russian).

2. pontryagin,L.L., Boltyanski,V.G. etc.

minimax problems of
Izv. AN. USSR. Tech.

(lgBg), MaLhemnLLca[J



486

Third Inmmauo_l Co_¢-mn_ on _vers_ Design Concep_ _d Opum_uon in Engine_nng Scicnc_
_CIDES-IID. Editon G.S. Dulikravich. Washincton D.C.. Octo_r 23-25. ]99l.

heory for optimal processes, Nauka, Moscow (in russian). ]
• Aptukov,V.N., Petruhin,G.I., Pozdeev,A.A. (ig85) "Optimal

braking of rigid body by the inhomogeneous plate under normal
impact", Izv. AN. USSR. Mech. Solids, 1, i85-170 tin russian).

4. Aptukov,V.N. (lg85J "Optimal structure of inhomogeneous plate
with continuous properties distribution over section", Izv. AN. USSR.
Mech. Solids, 3, 14g-152 (in russian).

5. Vitman,F.F., Stepanov,V.A. Clg58), So_e probtems o/ the strength
o/ solids, Acad. Sci., Moscow, (in russian).

P

Fig. I.

L J



487

Third In-'mational Co_"enc_ on I.nversc Design Conc_pls and Opumizauon in Engirm._nng Sciences
_qCI_)ES-II]%.Editor: G.S. Dutikmvich. Washin_lon D.C.. October 23-25. 1991,

I
I
I
I
I

Fig. 2.

8

0

o

Fig. 3.

/ J



488

Third Inmrnadonal Comremnce on Invers_ Design Concepts a_d Opdmizanon in Engineering Sciences
CICIDES-IID. Editor: G.S. Dulik.ravich. Washinmon D.C.. October 23-2! 1991.

Fig. 4.

L
Fig. 5.

J



489

Third Inmrnadorml Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-IID. Editor: G.S. Dulikravich. Washington D.C.. October 23-25, 1991,

["
ANALYSIS OF THE OPTIMAL LAMINATED TARGET MADE UP OF

ABSTRACT

DISCRETE SET OF MATERIALS

Valery N. Aptukov, Valentin L. Belousov

InsL_LuLe o/ Continuous Med_a MechanLcs
UB o/ the Accde_y o/ ScLences USSR,
Koro_.eua st.., I, Pernt, 814081, USSR
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N9 e "!3
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A new class of problems has been analyzed to estimate an
optimal structure of laminated targets, fabricated from the speci-
fied finite set of homogeneous materials. An approximate descrip-
tion of perforation process is based on the model of radial hole
extension. The problem is solved by using the needle-type variati-
on technique. The desired optimization conditions and quantita-
tive/qualitative estimations of optimal targets have been obtained
and discussed using specific examples.

INTRODUCTION

The problem of optimizing strength properties of inhomogene-
ous targets under impact of tapered conical indenter was first
considered in the study [i]. The qualitative criteria of optimal
target structure, developed in this and the following studies (for
example [2]9, were based on Pontryagin maximum princlple [3]. In
the previous research an assumption was made about existence of
analytical relation between material hardness and density - a
class of so called control functions.

In the present investigation the range of control functions
belongs to some finite discrete set. This suggests using technique
of needle variations [4] when estimating the necessary optimiza-
tion conditions and constructing computational algorithm.

An approximate analysis of penetration is based on the model
of radial hole extension [5].

ANALYSIS

I. PeneLraL_on modeL.

L

The model of radial hole extension is based on the assumption
of radial displacement of material particles under the plane axi-
ally-symmetric deformation, caused by penetration of the tapered
indenter.

According to [5], the pressure acting on the indenter within
the distance ( = x-_ from the front plate surface can be written
as

p= (I/2.)pu'.{(ar/_)a[8(_)-_/C1+_) + r_ar/a_2}1

+ CI/23pv 8C_3rc3r/O_ + CI/23cr s [I + OCc)l J

+

C1.1)

_J
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_here r : r(_) is the expression for the generating

axisymmetric indenter, p is the density, 8C_3 :

E/[_Cl+u)], u is the indenter current velocity,

stress, v is Poisson ratio, E is Young's modulus.
The equation of motion for the indenter of mass

form
x

Cl/23MdCu2 3/dx = -2_ _ pC( 3rC_ 3c ar/a_ )_
o

with the initial condition u(O) = _
o

line of the
In(l+c), c =
is the yield

M has the

CI.2)

2. OptLmtzatton problem.

It is convenient to represent the penetration process
system of differential equations relative to a vector of
coordinates y with u as a control function

and to define Freshet's differentiable functionals by
b

F [uC.3 bl : _ pCxDdx,0
0

F [uC.3,b_ : y_Cb3 : 0
%

Insertion of additional phase coordinates and use of
and CI.2) reduces (2.1) to

as a

phase

C2.1)

CP P)

CP..3)

Cl.l)

+ y'3 dy2/dx : y'- ACx-_'h,dy*/oh< : -2Cy* y_+ d lys3/Cd 2

dyS/dx =y'-BCx-l_'h, dyT/dx =2yT-CCx-lz)'h 2, dy'/dx =ACx3-ACx-l_,

dye /dx :BC x3-BC x-h3 , dyT /dx :y'-CC x-l_ "h, dy" /dx :CC x3-CC x-h.),

y'C03 : tl 2 yI(03 : O, Ct : 2,3, 83, CP 4)
0 ' ' " "

where d = (tg oO -2 d = M d2/R, y'= u 2

CL/ x>_O.),

x>O.) ,

CCx3 : 0 C L/ x<03, pCx7 8C_(x33 C_/ x>_03,
L ..I

The size, number and class of materials to be used in the
target layers are specified by a distribution of material proper-
ties

uCx3 : {u : xc_[x ,x 3, s:_,_ }, x : O, x : b,
S S S+! 1 n+l

where _ is the number of layers. The value of us belongs to a

finite set U which corresponds to a given set of materials u _cU =

{U,,U ...Uq}. Here us is the material in the sth layer, U_ is the

material number and q is the material quantity.

L ]
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op ,ml   lo Fwise continuous functions u(x) _cU and numbers b >0 one

choose a control (u°(x), b°} which will provide minimum for the
functional (2.23 under the limiting conditions (2. i), C2.33. The
quality criterion may be refered to as a specific plate mass (2.2)
subject to _(b) = 0 (under the requirement of arrested indenter).

3. Necessary condt t tons of opt tr_tzattom

A discrete character of the control function range doesn't
allow to generate small variations in the norm ll6ull=max 16ul. The

x_C [ o, b]

disturbed control may be written in the form

u(x) : [_o' xga, __cU (3 I)
tu , X_nt,

where m_ [O,b °] is the set of measure zero.
An equation for the system (2. I) is expressed in terms of

variations and the main terms of functional increments (2.2),
(2.3) are given _by

6c y/ ) - a?/c 65 = 7c5, 

6F ° : .[ [pC_.) - pCu°.)./dx + p[u°Cb°)16b°, (3.2.)

6F : 6y:(b°.) + _[gCb°),u°]6b °

Using the Lagrange identity and desired limiting conditions
for the disturbed trajectory one finds an expresslon for 6b °

b °

6b ° = [I/f [_lCb°),u°]]._ _#[f[y,u.) - f[y,u°.)3dx (3.39
0

where the conjugate vector_-function_ __ s_atisfies
d_/dx : - af /ay __ (3.43

Variation of the minimized functional is written as

6F [uC..) bl : _ [HCy,w,u°.) - HCy,_p,a.)ldx C3 5)
0 _

nl

In order to make the control function optimal it is necessary
to follow the principle of maximum

HCy,w,u°.) : max HCy,_#,_) C3. B)
w_cU

An expression for H is given as

H: D[_p Cx.)AC_.) + _#,Cx.)BC_D + _,Cx.)CC_.)]-pC_.), r_[b°-h,b°2,

H: ([_#Cx.)-_p2Cx+h)h-_pCx+h)]AC_.)+[_peCx.)-_p,C×+h)h-_p.(x+h)]B(_.)...

L

r_[O, b °-hl , C3.7)

]
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[-whereD : pru°Cb°.) /f

4. Geometrical t&terpretatto& and qualitative conc. tustons _6].
n

Ci) Function H can be expressed as H =  iC , 3 iC 3, are

continuous functions of x. The function H given in _lis refered to

as a hyperplane of support to a vector-gradient, which defines

directlon of increase grad H = {p,,pa,...,pn }. From this follows

that H approaches maximum at one of the vertices of convex poly-
hedron Q , which _resents a convex shell of the point set

_iCWs) ,Ws_CU, s = _ . The remaining materials of the set U can

be excluded from a further discussion.

(it) The continuity of PiCx) implies that at any vertex of

the polyhedron Q there is a hypercone K the, in_rior of which may
contain grad H at slight variation in x_ Cx',x" )_ [O,b] and allow

to satisfy the maximum condition. Thus, the optimal plate structu-
re includes the finite number of layers of finite thickness.

(iii) Substitutlon of materials is expected to take place at

the contact points x'of the hypercone K and one of the polyhedron

edges. It is to be noted here that the immediately adjacent mate-

rials may be only there which match the adjoining vertices of the

polyhedron.
(iv) It can be shown that from the entire set of materials

assumed in the vicinity of the rear surface the preference should

be given to material with minimal density.

5. Numerical algorithm..

Numerical procedure requires insertion of some admissible
control function uCx3 _ U and a small parameter Z which describes

the set of measure zero. Computational algorithm involves the

uniform mesh xhaving the mesh spacing _. The values of y and
I

are calculated at points Xs+ _/2 and assumed constant for the

segment Ix x ]
S' S+! "

Solution includes the following steps:

(i) The system (2.4) is integrated and 9(x) and b are defined

at mesh nodes.

(it) Boundary conditions for conjugate functions are prescri-

bed at the point x = b and _he system (3.43 is solved.
(iii) A new value of u" on the segment _ is derived from

s s

condition HC.,.,u'9 = max HC.,.,wg; if u_ = uCx+ _/29 this step
s W__ s s

iS repeated foe s = s+I; otherwise, a new control function is

assumed u" = u" CL/ x_c-m.) uCx3 C_/ x¢_) and calculation returnss s

L J
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Fro cir.
The procedure of improving control function proceeds like

this up to the terminal point on the right of the interval. The
process is completed as soon as uCx) remains constant at any s.

RESULTS

A set of materials contain annealed aluminum (a), aluminum
alloy B-g5 (b), annealed titanium Cc), titanium alloy BT-8
{d), steel CT.8 (e), steel 12X2H4A (f). Material properties are
given in Table i.

Table I.

Material

a
b
C
d
e
f

Density
p, g/sm 3

2.8
2.8
4.5
4.5
7.8
7.8

Young's
modulus E, GPa

70
70
110
120
20O
2OO

Yield

stress _, GPa

O. 08
O. 45
O. 08
O. 83
0.21
0.11

Poisson
ratio, u

O. 33
O. 32
O. 30
O. 32
O. 28
O. 30

For the case of dynamic penetration of tapered cylinder the
optimal plate will consist of two materials (d)+(b). The relative
front layer thickness of the optimal plate increases with the
increase in a half-angle of the cylinder opening a and initial
impact velocity u

0

Fig. I shows the decreased mass optimally _o of homogeneous

plates made up of (b), (d) and (f) -materials as compared to the
optimal one. Disadvantage of heavy materials (d) and (f) decreases
with the increase of vo, since their fraction in the optimal plate

is growing high. At u <800 m/s the preference is given to a homo-
0

geneous material (b) rather then (d), while at u >600 m/s the
0

prefered material is of d- type.
The results of present investigation agree qualitatively and

quantitatively with data reported in [2]. If instead of material
Cf) one uses steel with the yield stress 1.5 GPa an optimal plate
will consist of three layers. In case of a large choice of materi-
als an optimal target structure will be multilayer. However, the
main qualitative characteristic - a decrease of density and hard-
ness with a distance from the upper to lower surfaces of the
target - remains uncharged.

It is to be noted here, that the usefulness of a soft rear
layer in a target has been already justified but only in context
of fracture behavior of material. From mechanical point of view
the optimality of target structure predicted in [2] and in present
investigation implies its high resistance to penetration while
preserving the same ductile type of cratering.
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of Space System Engineering and Design, Dean of the College of x/' _ ,_:_j _

Cosmonautics, Moscow Aviation Institute, 4, Volokolamskoye 11 t_

Sh., Moscow, 125871, USSR r IJ

ABSTRACT

Formulations, classification, areas of application, and approaches to solving different inverse

problems are considered for design of structures, modeling, and experimental data processing.

Problems in the practical implementation of theoretical-experimental methods based on solving

inverse problems are analyzed in application to identification of mathematical models of physical

processes, input data preparation for design parameter optimization, design parameter optimization

itself, model experiments, large-scale tests, and real tests of engineering systems. This methodology

provides an opportunity to improve the quality of investigations and to accelerate realization of
research achievement.

INTRODUCTION

The process of design and testing of a new complex technical object can be arbitrarily divided

into a number of steps and sections (Fig. 1). Each of them is very important and essential. If the

problems are posed correctly and their solutions are accurate at each step then the developed

engineering system will be effective and reliable. Very often structures of today vehicles work in

extreme modes, on the limit of structural materials capacity. That is why any mistake made on any

of the stages of design and experimental development could result in a catastrophe comparable to

those of Chernobyl or Challenger.

Operational conditions of technical equipment in many industries become more and more

sophisticated and severe. At the same time, the requirements for reliability and service life as well

as effective technological decisions also grow. Therefore, we need not only to improve old,

traditional methods of research, design and testing of structures but also to develop altogether new,

more perfect ones. To these new methods we can refer those based of solution of inverse problems.

The latest 15-20 years witness permanent growth of interest to them. How can we explain it? First

of all, this approach made it possible to consider real phenomena taking into account non-linearity

and non-stationarity of physical processes characterising today engineering systems. This is a very

important point, since the above mentioned phenomena become determinating when operational

conditions of the vehicles approach criticality. Conventional classical methods can hardly cope with
these difficulties.

The chief advantage of the inverse problems methods is that they enable us to conduct

experimental studies under conditions as close as possible to real ones or to study the engineering

systems directly. Also, such approach enhances the informative value of these studies, accelerating

the experimental works as compared to the traditional methods, and reducing their cost. Besides

L J
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_taking into account non-stationarity and non-linearity, inverse problems methods provide an

opportunity to analyse account multidimensionality and interdependency of physical processes,

indirect measurements, and real scale of time.

All these advantages and possibilities of inverse problems are of special importance for

aerospace and rocket technology. Therefore some of the first formulation and solution processes

for the inverse problems, in particular, the inverse heat transfer problems, appeared in this area of

application.

GENERAL FORMULATION OF INVERSE PROBLEMS AND THEIR

CLASSIFICATION

All phenomena in nature are characterized by some cause-and-effect relationships, and it is

possible in the construction of mathematical models of physical processes to designate quantities

that are causal characteristics of the process and quantities that are resultant characteristics.

Accordingly, all problems can be classified into two types. In the fin-st, they involve study of the

effect on the basis of given causes. These are direct problems. In the second - study of the causes

on the basis of specified effects. These are inverse problems. Inverse problems have one common

attribute in contrast to the case of direct problems. Their formulations cannot be reproduced in a

real experiment. It is not possible to reverse the cause-and-effect relation physically, instead of

mathematically. For example, it is impossible to reverse the course of a heat transfer process or to

change the course of time. Therefore, in mathematical formalization, this property is manifested in

incorrect mathematical conditioning and must be taken into account in the development of solution

methods and in applying them in practice. When formulating general statements of inverse

problems and choosing the main classes of them, the statements of direct problems are supposed to

be known. Each direct problem (within the framework of an accepted mathematical model) can be

compared with a certain set of inverse problems. All inverse problems can be divided into three

classes on the basis of the general objective: inverse problems that arise in the diagnostics and

identification of physical processes; inverse problems that arise in the design of engineering

products; inverse problems that arise in the control of processes and products.

Inverse problems of the first class usually involve experimental studies. In these cases it is

necessary to reconstruct causal characteristics on the basis of certain measured "output" effect

characteristics. These problems are primary, both with respect to direct problems and with respect

to the other two classes of inverse problems, since they are connected with construction of

mathematical models and determination of different characteristics of the models.

Inverse problems of design type consist in determining design characteristics of an engineering

unit on the basis of given quality indices within certain limits. Required characteristics are causal

with respect to these indices and limits.

In the case of the control, the role of causal characteristics is played by controlling influences

the change in which creates the control action expressed by the system state, i.e. the effect.

It should be noted that there exists a fundamental difference between the two types of problems,

between problems of diagnostics and identification and problems of design and control. In the case

of design and control problems, the widening of the class of acceptable solutions usually simplifies

things, since it is then necessary to find any practically feasible solution that would ensure the

extremum of quality criterion with the given accuracy. At the same time, for identification and

diagnostics problems the wider the class of possible solutions, the worse the situation. Specifically,
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-the errors of causal characteristics determined can increase which will make obligatory the use of
1

regular methods of solution.

It should be noted that the theory and methodology of solution of inverse problems (that appear

with diagnostics and identification of physical processes) are less developed than those for the other

two classes of problems.

According to causal characteristics required it is possible to divide inverse problems of each

group into various kinds. Most often, MMs of physical processes are based on equations with partial

derivatives. In a general case, four kinds of inverse problems are introduced for them, viz.,

boundary, coefficient problem, retrospective problems, and geometric problems [1,2]. Boundary

problems consist in finding functions and parameters that form boundary conditions; coefficient

problems involve determining of functions and parameters that form part of equation coefficients;

retrospective problems, (i.e. time reversed ones) consist in finding initial conditions; geometric

ones presuppose reconstructing geometric characteristics of a domain or some points, lines or

surfaces within a domain (for examples, determining co-ordinates of a phase transfer boundary or

of a contact line of materials with different physical properties).

Now, if we again look at the block-scheme of development and creation of an important

engineering object (see Fig. 1) we can point out possible and expedient fields of application of new

methodology based on the solution of inverse problems. They are marked by shading. Thus, we can

see that the scope of application of inverse problems to design and testing is rather wide. It can also

be added that there exist a lot of useful applications of these methods for investigation, optimization

and development of different technological processes as well.

INVERSE HEAT TRANSFER PROBLEM

l

Among the most developed and widely used in practice there are inverse problems of heat

transfer. Consider now their posing.

In correspondence with three main forms of heat transfer let's introduce three groups of inverse

problems: inverse problems of heat conduction, inverse problems of convective heat transfer, and

inverse problems of radiative heat transfer. If combined or complex heat transfer is considered,

corresponding statements of inverse problems will appear.

Let us now, for example, dwell upon a more concrete formulation of the two groups of inverse

heat transfer problems.
INVERSE HEAT CONDUCTION PROBLEMS (IHCP). Problems of this kind are the best

investigated and the most widely used in practice [1-4].

As an example, let us consider a one-dimensional problem of heat conduction in a two-layer

plate assuming that the layer materials have different thermal properties and that in one of them

there occurs a phase transfer, e.g., melting. Layer boundaries bl(X), b2(x), b3(x) can move with

time as a result of some physical processes (ablation, thermal expansion or shrinking, mechanical

deformation). The internal front of phase transfer q('t) is also moveable.

We'll assume that temperature field T(x, x) in the plate is described by equation system for

generalized heat conduction

c) 3T) _(_.j_____T +K) +S/ j:1,2,3 (1)
Ox = _x _x ) _x '

in domains bl(z) < x < ]q(z), 1]('_) < x < b2('c), b2(z) < x < b3(z), respectively. Conjunction condi-

tions on lines rl('t) and b2('t) have the form I
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F TI(TI(%) - 0, %) = T20](%) + 0, %)

bT1 x _T2 x Oil-
- L2-a-Zx _ r a%

_'l--_-x ='q(%) - 0 = q(%) + 0

Tz(b2(% ) - 0, %) = T3(b2(% ) + 0, %) - R _L2 _T2

OX X = 02('[)-

tIT2 x (3T3 x%'2-_-X b2(%) 0 = _3-_-X= -- = 02(% ) + 0

0

1

To the system (1) let us also add initial temperature distributions

Tj(x, 0) = _)(x), j=1,2,3

at bt(0) _<x _<1](0), T](0) _<b2(0 ), b2(0 ) _<x <_b3(0), respectively, and conditions on the plate

boundaries. As boundary conditions we can regard temperatures

7")(by (%), z) = tj ('t), j = I, 3;

or heat fluxes

or Newton conditions of convective heat transfer

= q) (%), j = 1, 3;

-- o_j [Ty (by (_), %)- Tf (%)], j-- I, 3;

or conditions that take into account body heat transfer with the environment by means of convection

and radiation, and also the heat source that is caused by other processes (melting, sublimation, atom

recombination, etc.)

[_T.

- _'J _x lix = b) (%) = - ) '- =
_/[Ty(bj(%),%) T*(l:)]+a)qr Ey c T_) (bj (%), %) + g), j 1, 3.

Here qr is an incident radiant flux; or- is the Stephan-Boltzmann constant. Various combi-

nations of the above-mentioned boundary conditions on lines b1(%) and b3(%) are also

L possible. ]
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| Coefficients Cj, kj, K) and the source Sj in the equations in the general case can be functions [

of co-ordinate x, time 'L and temperature Tj, or any combination of these variables; in the simplest

case they will be constant. Values r, R, aj, Ai, aj, gj can be considered as functions of the time and

the corresponding temperature.

In the given problem, the causal characteristics will be volumetric heat capacities Ci, thermal

conductivities Xj, convection coefficients Kj, sources Sj, movement of boundaries b 1, b 2, b 3, and

phase transfer front rl; volumetric heat of phase transfer r, contact thermal resistance R, boundary

temperatures tj, heat fluxes qj, ambient temperatures _; absorption coefficients Aj, emissivities

ej; and surface heat sources gj. The inverse problem of any kind consists in determining certain

values of the sum total of causal characteristics adduced above. Certain additional conditions should

be given. In most cases they will be temperature measurements T(d i, "¢)=f/(z), i = 1, N in N

stationary or moving points d i of a body; it is seldom that spatially continuous temperatures are

considered.

According to the above-introduced causal characteristics of heat transfer processes, the follow-

ing kinds of inverse problems can be introduced.

The first kind is a retrospective heat conduction problem, or the problem with reverse time - the

finding of temperature distributions in previous moments (in other words - the determining of the

prehistory of the given heat state);

The second kind is a boundary inverse problem - the reconstruction of thermal conditions at the

boundary of the body. A problem connected with the continuation of the solution of heat conduction

equation an overdetermined boundary belongs to this type of problems;

The third kind is a coefficient inverse problem of heat conduction - the specification of

coefficient of the heat conduction equation (the identification of heat conduction operator).

Finally, it is possible to introduce one more kind of inverse problem, a geometric one that

consists in finding some geometric characteristics of a heated body, e.g. in reconstructing the

movement of the heat transfer boundary of a body on the basis of the results of temperature

measurements within the body.

Combined statements are possible when causal characteristics of different types are sought

simultaneously. For example, we can simultaneously estimate boundary conditions and tempera-

ture field in the past moments of time in the problem without initial conditions. This problem is a

combination of a boundary problem and a retrospective one. There can exist natural combinations

of a boundary problem and a coefficient one as well as those of a boundary problem and a geometric

inverse problem of heat conduction.

INVERSE PROBLEM OF CONDUCTIVE-AND-CONVECTIVE HEAT TRANSFER FOR A

POROUS BODY [2]. One more typical problem is connected with the development and testing of

porous cooling systems of various designs. In these cases it is necessary to have information on the

following characteristics: heat fluxes on blown surfaces; thermal conductivity _'s ; internal heat

transfer coefficient c_v of a porous body, heat transfer coefficient c_0 at a coolant inlet into a

porous material. Determination of these values from transient temperature measurements in porous

structure is reduced to the solution of an inverse problem of conductive-and-convective heat

transfer. In the one-dimensional case for a flat layer of a porous material with gaseous coolant, the
MM of heat and mass transfer has the form

J
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_s V

_ - _(L- T), x e (0,b),_e (0,_];

(pCp)g ---_: 3-_-oxOx _ Ox )-(p v Cp)g 3x + ---fi-(rs- 7"8),

x e (0, "_e (0, %3;

rs(X,o) = _s(X),rg(X,o) = _g(x),

OTs(b, x)

- _'s _x - °t°[Ts(b' "¢)- Tg°];

(p v Cp)g rg(b, z) = (p v Cp)g rg o + Oto[rs(b, "t)- rgo];

_Ts(O, "0

_'_ 3x =q('0;

O2Tg(b, Z)
=0;

_)X 2

- --_ = o¢(I.tV)g+ ff(pv)eg;

(2)

(3)

(4)

(5)

Pg Mg

Pg = 8314 Tg "

Here indices s and g

ity at constant pressure;

letter p means pressure;

(6)

(7)

(8)

(9)

(10)

mean solid and gaseous phases respectively; cp is specific heat capac-

p is density; v is velocity; capital P is porosity of the solid; a small

I.t is viscosity; M is molecular weight; c_ and 13 are hydraulic coeffi-

cients; Tg 0 is initial temperature of the injected gas.

This model contains the energy equations for solid and gaseous phases both the corresponding

initial (4) and boundary conditions (5)-(8), and a modified Darcy's law (9) and equation of state for

the gas (10). The condition (8) is one of the variants of natural boundary condition. It provides for

the uniqueness of the direct-problem solution and, simultaneously, gives results that agree well with

those corresponding to the actual boundary conditions of the first and second kind.

The unknown causal characteristics include q, Ks, otv, cz0.

The measurement data are specified with the conditions:

Ts(d,,,'O =fnH;), "t:• [0, 'l_m], iv/ = 1, N, N > 1, 0 < d I < d 2 <" d N < b

EXPERIMENTAL-THEORETICAL INVERSE-PROBLEM METHOD

l

In an exact formulation, any inverse problem can be written in compact form using an operator

equation of the first kind
Au=f, ue U, fe F. (11)

Here an operator A and fight side f are given data. Value u is an unknown. It may be vector,

function, or vector-function. Let us assume that operator A is continuous, and spaces U and F

are metric.

It is known, that the problem ( 11 ) is called well-posed if it meets the following requirements (the

Hadamard conditions):

* solution of the problem exists for any right side;

J
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r * solution is unique;

• it depends continuously on .f
If at least one of the requirements is violated, this problem is called ill-posed. This is the very

situation, which is observed in solving the inverse problems.

This requires not only the development of special mathematical methods, but also proper

technical organization of the studies. Experience indicated that only with a rational combination of

physical and mathematical fundamentals it will be possible to make effective and creative use of

the methods considered.

We shall use the concept of an experimental-theoretical inverse problem method, by which we

mean an aggregate of studies and developments that includes physical and mathematical statement

of the inverse problem, methods and algorithms for its solution, the necessary technical systems,

and organization of experimental studies.

ON THE HISTORY OF THE MATHEMATICAL SUBJECT-MATTER

A retrospective look at the matter of solving inverse heat transfer problems and utilization of

corresponding methods justifies to the fact that a tendency for rapid development of the scientific

trend observed to-day was of irregular nature before.

The interest and attention shown by investigators to this problem appeared incidentally. The first

formulations and first attempts of solving inverse problems, perhaps, should be related to determi-

nation of historical climate and heat condition of earth's ground layer. These are works of Fourier,

Poisson and Kelvin in the 19th century.

It should be noted that some methods used at present are based on solutions known long enough.

The example of this - presentation of solutions of linear problems of heat conduction through

Dugamel integral (1832) with further numerical inversion of it. However, the corresponding

procedures for determining unsteady heat fluxes appeared much later in works by T.J. Mirsepassi,

one of the first having been published in 1958 [5], in works by G. Stolz (1960) - [6], by J.V. Beck

(1962 and later in [7,8]), by G.T. Aldoshin, A.S. Golosov, V.I. Zhuck (1968 and later in [9,10]) by

O.M. Alifanov (1969 and later in [ 11-14]) and by other authors. Regularization of heat state of solid

bodies in the form of exponential law of temperature change was discovered in 1901 by J. Boussi-

nesq. At the same time the basics for the theory of regular heat state was developed by G.M. Kond-

ratiev and later by A.V. Lyikov in the 40s and the 50s. In 1955 the principle of regular heat state

was used by N.V. Shumakov to find non-stationary heat fluxes through a successive interval

method [15]. Apparently, it is the first "promulgated" technique for solving boundary inverse

problems of heat condition.

Note that for a particular case of so-called pseudo-inverse heat condition problem W.H. Giedt

in 1955 [16] and O.N. Kastelin jointly with L.N. Bronsky in 1956 [17] published a procedure for

its solution which still finds its application.

A solution of heat conduction problem in the Cauchy generalized formulation presented as an

infinite power series was obtained by J. Stefan in 1890 [18]. This result can be considered as the

first exact solution of a one-dimensional inverse problem with constant coefficients, although for

this purpose it was not used until the studies of A.G. Tyomkin and O.R. Burggraf [19, 20] who in

1961 and 1964, respectively, got similar by form solutions for a series of other linear inverse

problems of heat conduction.

Thus, despite the fact that necessary preconditions for constructing solution of inverse problems

L appeared already in the last century and at the very beginning of the current century, practical /.3
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|conclusions, nevertheless, have been drawn quite recently. The most active and stable period forl

the development of solution methods and their application falls on the last 20 years.

Let us touch upon history of mathematical studying and solving ill-posed problems.The condi-

tions for well-posed formulation of any problem of mathematical physics were introduced by

J.Hadamard in 1902 [21]. Usually it was assumed that if the original mathematical formulation of

a problem did not satisfy any of these conditions, it was then of no physical or practical sense, and,

consequently, there was no reason of constructing its solution. Gradually, however, the attitude of

mathematicians and physicists towards ill-posed problems began to change. Already in 1926

T. Carleman makes the first attempt to solve an ill-posed problem [22]. In the 3Os new investiga-

tions on determination of historical climate have been made by A.N. Tikhonov. In 1943 he

formulated for the f'trst time in a complete form the so-called conditionally-ill-posed statement of

ill-posed problem of mathematical physics assuming a stable solution in the compact class of

functions [23]. This fundamental result, beginning from 1953, is further developed in the works by

M.M. Lavrentiev and by V.K. Ivanov (see bibliography in [24, 25]). To this trend we can refer an

interesting study by F.John in which he presents a method of solving heat conduction equation with
inverse time [26].

The most weightful mathematical result of general nature in the area of ill-posed problem

opening a fruitful direction in the mathematical physics and computing mathematics was obtained

in 1963 by A.N. Tikhonov [27]. It should be noted that very close idea was proposed for solving

linear integral equations of the first kind by Phillips in 1962 [28]. But he did not give any strict

substantiation of this approach. Tikhonov's method of regularization broadened considerably the

bounds of effective practical use of ill-posed problems in various fields of science and technology.

Since that time this method has got intensive development in the works by A.N.Tikhonov,

V.K. Ivanov, V.Ya. Arsenin, V.A. Morozov, A.B. Bakushinsky, V.B. Glasko, V.N. Strakhov and

many other mathematicians (see bibliography in [25, 29]).

At present we have quite a complete mathematical theory of solving ill-posed problems, the
pivot of which being this very method.

The majority of works devoted to a development of the regularization method treat one of its

forms which got the name of a variational method.

Other forms are also possible. Among the most universal is a so called iterative regularization

which is most effectively realized with the help of non-linear gradient algorithms. This quite a

general method has been proposed by O.M.Alifanov [30, 31] and mathematically grounded

together with S.V.Rumyantsev [32, 33]. Important contribution to solving inverse heat conduction

problems by the iterative regularization has been made by E.A. Artyukhin.

Also, it is necessary to mention a book of R. Latt'es and J.-L. Lions [34] in which they suggest

the quasi-inversion method specially for the equations with partial derivatives. A close approach

was suggested by O.M. Alifanov in 1971 for solving inverse heat conduction problem in the

Cauchy statement [13]. It is called the artifical hyperbolization method. But these approaches
haven't strict substantiation.

Simultaneously with the development of the general theory of ill-posed problems and construc-

tion of regular method for their solution a process is observed with respect to the elaboration of

stable and effective in practice methods and algorithms for solving inverse problems of heat

conduction. The initial phase of developing the computational procedures to solve these problems

(till the time when a regularization method appeared in 1963 and, evidently, after another few years

when the attention of practical workers was attracted by this method, i.e. somewhere in 1968-1970)

J
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-can be named a heuristic regularization and the corresponding methods got a conventional term of |
"3

direct methods. In other words the authors of corresponding algorithms achieved stability and

acceptable accuracy of results basing mainly on the physical sense and, consequently, on the

physical level of rigour. Apart from the above works to this trend in solution of inverse problems

we can refer a trial-and-error method used by L.A. Kozdoba [35] and methods of linear dynamic

filtration being developed by Yu.M. Matsevitiy, A.V. Multanovsky and D.F. Symbirsky [36, 37].

Rigorous mathematical conditions are not yet formulated in the approaches pointed above.

Alongside with heuristic methods, beginning from the end of the 60s and in early the 70s, there

appeared mathematically rigorous methods of solving inverse heat conduction problems.

In their majority these methods are related to the linear problem formulation and constructed

basing on a variational technique of regularization and, later on, on iterative regularization. Just to

illustrate this, refer to some works both on the first [1, 38-41] and on the second [2, 4, 30, 42]

directions. Both approaches, as computational experiments and actual physical tests show, turn out

to be acceptable for solving various nonlinear problems as well [1, 2-4, 31, 43-46].

APPLICATIONS OF INVERSE-PROBLEM METHODS

Numerous scientific and practical results have now been obtained with the aid of the pertinent

methods. Let us briefly dwell on some of them.

HEAT DIAGNOSTICS. Let us start with non-stationary heat diagnostics [2,41,47]. The method

of boundary inverse heat conduction problems can be used in thermal diagnostics of both slow and

fast heat transfer processes. Our investigations have demonstrated that it is possible to reconstruct

heat-flux and heat transfer coefficients with accuracy comparable to that of temperature measure-

ments in the solid body. We have developed different principles of one-, two- and three-dimen-

sional thermal indirect measurements based on solution of boundary inverse problems, which have

required dimensionality.

On the basis of these principles, sensing devices for heat diagnostics of high-temperature gas

flows has now been designed, refined experimentally, and put to practical use in various branches

of industry. In particular, these are different types of uncooled and cooled sensors. For example,

similar sensors are used for experimental studies on plasmatrons and gasdynamic stands in which

the gas jets are created by special aviation and rocket engines.

Similar sensors can be used successfully to measure not only convective, but also radiative heat

fluxes. They are capable of much faster response rates than the Gardon-type sensors widely used

in practice.

Experimental studies showed that heat-flux variations at frequencies up to 100 Hz can be

registered by using uncooled sensors and processing their readings by solving a boundary IHCP.
One-dimensional sensors can be used to measure transient local heat fluxes and local heat

transfer coefficients. To determine discrete fields of these values it is necessary to install a sufficient

number of sensors at various space points, for example, at various points of streamlined surface of

a solid body. However, if we go to solution of two-and three-dimensional inverse problems of heat

conduction, we can reconstruct continuous spatial-time dependences of heat fluxes and heat transfer

coefficients on a body surface. In these cases temperature measurements are usually made on part

of a heat-insulated boundary of the body, namely on a line for a two-dimensional case and on a

surface for a three-dimensional case. Sensors with such sensitive elements [2,47] can be mounted

on a model or a mock-up of the object under study, or on a full-scale object, the thermal conditions

L J
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rof which is determined under test or design operating conditions. Sometimes temperature measure -[

merits can be conducted within a solid body.

The above methods for indirect measurements are of special value in the diagnostics of

heat-transfer processes under various conditions that do not admit of easy calculation, as in

investigation of the laminar to turbulent flow transition, the interaction of shock waves with

boundary layers, heat transfer in separation zones, streamlining by nonequilibrium flows of

dissociated gas, in the case of heat exchange with boiling, injection of gas or liquids into boundary

layers, and so forth.

It is important to note, that the procedures of simultaneous determination in experiment of the

two or more functions (or parameters) in heat balance equation on body surface are developed

[2,47]. For example, we can find simultaneously a local coefficient of convective heat transfer as

a function of temperature factor c_ (Tw/T*) and an emissivity of the surface as a function of its

temperature e (Tw) for known environment characteristic temperature T*(x). Basis of these proce-

dures is special formulations and solution methods of boundary IHCPs.

The boundary inverse-problem method is one of basic for study of non-stationary heat transfer

in the system: solid-gas (or liquid).

It is known, that a heat transfer coefficient, obtained for conditions when an influence of solid

body on thermal state of boundary layer is taken into account can considerably differ from a heat

transfer coefficient, which is determined for stationary conditions. The approach to study non-sta-

tionary heat exchange includes two parts. The first one consists in solution of joint heat transfer

problems, when equations of heat-and-mass transfer both for solid and gas (or liquid) must be

solved simultaneously.

The second is experimental investigations of non-stationary heat transfer and, in many cases, the

experiment still remains the major technique of such studies [48,51]. Such experimental investiga-
tions are based on simulation of natural transient heat-and-mass transfer and determination of

non-stationary heat transfer coefficients as functions of time. It is required not only to correctly

conduct and successfully carry out experimental research, but also (and this is very important) to

find effective ways of processing the obtained data. It was found that inverse problem forms an

effective means of getting the necessary results in experimental information processing.

Use of the inverse-problem methods to process experimental data permits to develop new

approaches to the very formulation of the experiments to investigate heat and mass transfer, making

such experiments more efficient and informative. For example, a new universal procedure has been

proposed for aerodynamic thermal tests to investigate heat transfer in a broad range of Reynolds

numbers using working chambers of comparatively small sizes [52]. This technique is based on the

use of the boundary inverse heat conduction problem, that has made it possible to conduct

experiments under essentially nonsteady heat-transfer conditions with long models mounted in the

working section of the wind tunnel before it is started (which had previously been impossible). Part

of the model is situated directly in the supersonic nozzle. This makes it possible to investigate flows

with uniform fields of the gasdynamic parameters over practically the entire characteristic rhombus,

and this, in its turn, makes it possible to set up not only laminar but also transitional and turbulent

boundary layers on the model.

Another area of application of those methods relates to investigation of temperature fields, heat

flux-fields and also thermal stresses in structural materials, something that is very important for

various types of flight vehicles, engines, and power-generating equipment [47]. It is often found

that temperature sensors cannot be mounted inside of materials due to technological, structural and

i J
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Fmethodical reasons (because of its violating the integrity, and strength properties of materials, I

"7

introducing distortions into the temperature field and into the field of thermal stresses, and also due

to the difficulties in providing good thermal contacts of sensors with the material, etc). It is then

necessary to reconstruct the temperature field from temperature and heat-flux measurements made

on part of the boundary of the body, i.e. to solve the corresponding inverse problem. This approach

has been used, for example, in investigating the hot strength of graphite structures, and has

produced good results.

New and important field of use of methods based on solution of the inverse problems is

experimental-theoretical studies of heat-and-mass transfer in porous mediums, in particular, porous

cooling systems. These systems are an effective means of heat protection. It is performed by the

coolant supply through special inserts made of porous materials. Coolant here is gas or liquid. In

the course of experimental studies of porous cooling systems it is necessary to determine non-sta-

tionary thermal boundary conditions on the surface of a porous body and to identify heat effect of

coolant injection into a boundary layer. The direct measuring of values included into the boundary

conditions of a heated surface is either very difficult or downright impossible, but the temperature

on the opposite surface of a solid matrix can be measured. In this case we are faced with the

necessity of solving a boundary inverse problem for an equation system for heat-and-mass transfer

in a porous structure [2,53,55]. For a gaseous coolant appropriate formulation of inverse problem
was considered above.

Of practical importance is the problem of studying the heating and heat destruction of thermal

protective materials, including the investigation of reducing convective heat transfer due to

injection of gaseous products from the ablated surface. The main types of measurements in

experimental study of such materials are temperature measurements within the bodies (usually by

means of thermocouples) and on the external surface (by optical methods) and measurements of

the ablation rate. The processing of measurement data can be performed by methods based on the

solution of inverse heat conduction problems.

The following example is referred to a determination of thermalproperties of different medium

and materials, in particular, heat-protective materials interacting with high-enthalpy gas flow.

Thermophysical measurements, based on classical techniques, for many materials can be made only

at temperatures and rates of heating much less than those in reality. To avoid the above discrepancy

is possible simulating the required conditions of specimen heating on special test facilities (plas-

matrons, in the jets of rocket engines and other) with a successive treatment of temperature

measurements by coefficient inverse problem [56-64]. That is, using some mathematical model of

heat transfer in the material (in the simplest case - a heat conduction equation) we are to find a

required value (or values), for example a heat conductivity as function of temperature, "adjusting"

the calculated temperatures to those thus measured. Thermal properties thus obtained correspond

to the heating conditions brought near to real conditions in which the material operates. In many

cases, if properties of decomposing materials are investigated, it is necessary to develop inverse

problem procedure for mathematical model that takes account of the non-isothermal decomposition
kinetics.

Another field is the estimation of contact resistances which characterize the heat transfer

between the connected parts of structures as well as the prediction of their change in the course of

time, in particular for structures, where there is a great number of bolted and riveted joints, hinges

and so on. For thermal shields it is necessary to know the resistance of adhesive film, and this

problem often can be interpreted as the problem of contact resistance specification. The method of
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Fboundary inverse problem can be successfully applied to processing the results of specially ]

conducted experiments in solving the problem of contact heat transfer, non-stationary conditions
included.

The next field of application of inverse problems is diagnostics of friction. In mechanical

engineering, the investigations of friction and wear of different movable joints are of great

importance because machines reliability and overhaul period depend on them. Besides, these

investigations permit to reduce friction losses and, consequently, increase machines efficiency.

Today, bench tests is very often the only means to test experimentally a movable joint. But they

can not substitute service tests which provide the most complete data on a joint performance in

operating conditions. At the same time, service tests of friction units rarely give data on friction

losses. Thus, for example, the existing methods of direct measuring of friction torque, charac-

terizing work in friction, rest on the use of special elastic elements, i.e. torsion devices. Their lay

out presents a problem even in bench tests. In operating conditions measuring of friction torque

with these devices is often impossible. So, work in friction (friction torque) is defined through other

measurements well correlated with the sought-for quantity. The most suitable are temperature

measurements not requiring complex equipment. Using these data it is possible to reconstruct heat

release in friction zone. Almost all friction energy (85-100%) goes into heat. Thus, it becomes

possible to estimate work in friction, and, accordingly, friction torque, using the data on heat

release. Heat release itself may be found by solving inverse heat transfer problem with known
temperature measurements.

Using this approach and iterative regularization, appropriate procedure for tests of the sliding

bearing was developed and used in practice [65]. Obtained results of 10-15% agree with the results
of torsion measurements.

The above applications concern diagnostic and identification problems. General procedure for

structural and parametric identification of physical processes, based on solving ill-posed inverse
problems, is presented in [66].

With the help of inverse problem principle various design problems also may be solved. The

problem of the optimal design of a muhilayes heat shield is considered. It is required to determine

the design characteristics (the number, materials and thicknesses of the layers) of such shield, one

of whose boundaries as well as the corresponding layer is subjected to external transient heating

and ablation, while the other is subjected to cooling by the circulating heat transfer agent. The total

mass of the shield is the criterion for the quality of the heat protection. The optimization problem

has a number of restrictions taken into account, which are dictated by the requirements of the

admissible temperature conditions for the layers, the specific heat of the coolant, the thermal

stresses, and so on. Therefore we have a combined coefficient - geometric inverse problem of

thermal design type. This problem is solved by the iterative method [67,68].

At present methods based on solution of different inverse problems find their application not

only for model thermal experiments and parameter optimization. They are also used for full-scale

tests, in particular, for diagnostics of heat transfer boundary conditions and heat loads on different

real structures and for identification of thermal properties of heat protection and heat insulation

materials in real operating conditions.

One field of application of these methods is thermal-vacuum test ofspacecrafts. Such approach

permitted to create new effective procedure of testing. It includes the following three main parts:
special preliminary testing of object for the purpose of identification and correction of mathematical

/ J
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'models of heat transfer processes in test object; choice of thermal simulator mode with help of |
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solution of the inverse problem of control type; regular testing itself.

Very important fields of applications of inverse problems are different nature (real) experiments

and tests, for example, flight tests. In many of these cases, such approach is the only possible means

for obtaining necessary quantitative information about heat conditions of vehicles under test, since

other methods turn out to be unfit. Appropriate procedures and technical devices were created and

used for study (in flight experimental conditions) of porous cooling system, reusable thermal

protection, thermocontrol coating of space vehicles and strength of structures of flight vehicles.

For example, developed methods were applied to study of thermal modes of reusable heat

protection of "Buran" aerospace vehicle. The flight tests were conducted on special automatic

re-entry vehicles "Bor-4" series. In these cases heat diagnostics was carried out in the following

ways:

- estimation of heat fluxes on the surface of the tiled thermal shield;

- quality analysis of the effects of physical-chemical reactions on the thermal shield surface with

its catalytic properties being changed;

- evaluation of heat state of the thermal shield surface in the tiles gaps;

- estimation of the inner heat state of the tiled thermal shield material under the heating in flight
conditions.

Unique results were obtained by means of these methods in the course of such tests.

The next important example has to do with diagnostics of radiative characteristics of thermal

control coatings of spacecrafts. Of great interest is an experimental determination of the solar

radiation integral absorption factor and integral semi-spherical emissivity of external surface in the

conditions of actual operation of the coatings. In particular, such studies are conducted on vehicles

of "Cosmos", "Meteor", "Meteor-Priroda" series. In the result it was possible to construct a

mathematical model for varying the radiation characteristics of coatings in the course of time and

predict these variations for longer time of operational use of the vehicle, as compared with duration

of experiment.

Besides model experiments, design and testing of technical units inverse problems find their

fruitful use in investigations, optimization and operating diagnostics of various technological

processes. Just for example let us touch upon some of them.

Procedures for determination of heat loads by inverse-problem solution may be very helpful in

experimental study of liquid cooling in continuous casting and heat-treatment of metals. Such

cooling removes heat flows of rather high specific rate - up to 100 mW_m2 with realization of high

velocity non-stationary processes. Complex thermohydrodynamic processes occurring while

spraying liquid over a high temperature surface cannot be described so far with the required

accuracy by means of theoretical methods. So, such kind of investigations are still described

through experiments. The experimental data are obtained and generalized by solving inverse

problems of heat exchange.

The direct estimation of local rates of the removed heat flow during liquid cooling and with

boiling is hindered by rather great change of surface temperature rate. Standard heat flux meters

have time constant about 1 sec - two orders more than process characteristic time. Effective

measuring means for these purposes may be obtained on the basis of boundary inverse problems

principles [70].

Another example is the thermofretting of metals. This is a progressive trend in heat-treatment

L technology for critical steel products that operate under heavy mechanical loads, such as the disks, 3
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-and rotors of large power-generating steam turbines. It is now impossible to investigate and|

optimize the thermofretting process without experimental testing, and this is a typical area in which

inverse-problem methods can be used to good effect.

Inverse problems of structure mechanics. Problems of reconstruction of loads on the structure

by its stress-deformed state parameters as well as problems of determination of the fields of stresses

and shears in a given part of construction elements by stresses (shears) values on a part of its surface

fall under the class of inverse problems of mechanics of deformated solid [69]. An analysis is made

of corresponding methods and their practical application for investigation of strength of space
vehicles during flight tests.

Of course, the range of possible practical uses of the inverse-problem methods is considerably
broader than that indicated above.

To summarize, we observe that these experimental-theoretical methods not only have a broad

spectrum of important applications, but they are distinguished of high information yield and enough

high reliability. For more complete acquaintance with existing today methods and algorithms of

solving ill-posed inverse problems and their different applications refer to the following books

[ 1-4,25,29,34-37,41,48]. Also, it can be recommended to look through the numbers of Inzh.Fiz.Zh:

vol.29, no.l, 1975; vol.33, no.6, 1977; vol.39, no.2, 1980; vol.45, no.5, 1983; vol.49, no.6, 1985;

vol.56, no.3, 1989 (English translation in Journal of Engineering Physics - bibliography data is the

same). The numbers were dedicated specially to those problems.

l
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ExPerimental-computational

unsteady heat transfer processes

methods for estimating characteristics of

are analysed. The methods are based on

principles of distributed parameter system identification. Theoretical basis

of such methods is numerical solutions of nonlinear ill-posed inverse heat

transfer problems and optimal experiment design problems. Numerical techniqes

for solvin_ problems pointed out are breafiy reviewed. The results uf

practical application of identification methods are demonstrated when

estimating effective thermo-physical characteristics of composite materials

and thermal contact resistance in two-layer systems.

I NTRODUCTI ON

In creating different thermally stressed structures and systems, of wide

importance are mathematical modellin_ ano simulation of heat transfer

processes occurrin_ inside them. The use of mathematical simulation aiiows to

preoiot e tllerma! state of the 0ynamical system under consideration in wide

r_.aneeuf its operational conditions and to estimate the effect of different

ra,_.r.ors,-,nthe system behaviour. Accurate enough thermal state simulation for

T:ite:_vsr_em is one of the main procedure, when optimizing thermal conditions

ant/ design parameters.
T}-,ethermal mar_nematical model of a system or a process 8]ialysed is

_ormed basin_ on the heat and mass exhan_e theory ,.see, e.g.[i] ;, a/ia it

,/:,__nna.ir_sa set of characteristics. Characteristics 8re usually determined by

experimental way. By this, most of them can be determined only by means of
irJdireut measurements, in this case a mathematical model is used whi,:,h is of

the e'iven structure end usually contains unknown constant parameters.

it should be emphasized that in determining chsracrteristics, methods of

carrin__ ,:,utexperiments as well as methods of data processing should consider

pecuiiari[ies of mathematical models used to simulate thermal conditions But

this factor is not taken into account in overwhelming m_jority of traditional

methods for determining characteristics. Simple mathematical models and

severely controli_ heating conditions for specimen are used in these methods.

!raditional methods for determining of thermophysical characteristics can

serve as _] example [2]. As the result, a desired accuracy of cleterminin__

chara,..reris__ic;s is not provided. In this case mathematical simulation of

thermal conditions is also realized with the low accuracy.

3hort.comings of traditional methods for determining characteristics are

L_Ispiayed when analysing a wide enough range of thermal processes. In

particular, one can refer to such processes heat transfer in composite heat

shield and thermo-insu fat in_g materials, contact heat transfer in

hi_h-t.emDerature power plants, heat arid mass exchan__e when materials and I
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any o_ners. That is why one mus_ develop and implement new methods of
providing trustworthy information on different characteristics of

processes analysed.

Since characteristics should correspond to the mathematical model used.

their determination should be considered as a part of mathematical model

building by using experimental data. This procedure is called identification

problem [3]. When determining characteristics, the mathematical model

structure is supposed to be known. In this case one can speak about parametric

identification problem [4] or parameter estimation problem [5]. Unsteady

thermal processes are referred, as a rule, to the category of dynamical

distributed parameter systems. This allows to use experimental-computational

methods for determining characteristics based on the main principles and

approaches of distributed parameter system identification [6].

study, ]
thermal

I DENTI FI CATI ON OF HEAT TkANSFER CHARACTERI STI CS

In identifying heat transfer processes, problems of determining

characteristics in mathematical models with given structure are formulated as

coefficient-type inverse heat transfer problems [7]. Methods and algorithms

for solving these problems are the effective means for determining

characteristics of different thermal processes and systems [8,9]. In spite of

achievements available, the inculcation of methods based on solving

coefficient inverse heat transfer problems was not very active, till recently,

because of the following. The fact is that the solution of such problems

strongly depends on the used scheme of temperature measurements [4,10,11]. It

means that. quite different results can be obtained for the same heating

conditions of the system analysed but for different number of temperature

sensors and their locations. That is why almost every

experimental-computational study is followed by labour-intensive analysis of

thrustworthyness of the rusults obtained on the basis of numerous parametric

computations <See, e.g., [12]).Preliminary optimal design of temperature

measurements and other experiment conditions allows to reduce considerably the

volume of work. The combination of methods and algorithms for solving inverse

problems and experiment design problems is the methodological foundation of

identification procedure. This combination forms the new approach increasing

essentially an efficiency of thermal studies and determination of heat

transfer characteristics.

The voluminous literature is devoted to methods and algorithms for

solving inverse heat transfer problems. One can point out, in particular,

monographs [4,5,13-20] and bibliography inside them. Host of works available

deal with the solution of boundary inverse heat conduction problems, in which

thermal boundary conditions are determined by using unsteady temperature

measurements inside the body analysed. The considerably lesser number of

publications is devoted to solving coefficient inverse problem (see, e.g.,

bibliography inside [4,14,18.18,19]).

Algorithms suggested at present for solving coefficient inverse problems

are based, in overwhelming m_iority, on minimizing the residual functional.The

minimization procedure is built by using an exhaustive method [14,21],matching

method [18]. method of optimal dynamical filtration [19] and gradient

methods. To compute a gradient of the residual functional, the following

techniques are used: finite difference method [22], sensitivity functions [23]

arid a solution of boundary-value problems for conjugate variables, which are

written down for linearized direct problems [24-26], as well as for finite

difference analogues of direct problems [27]. Efficiency of these techniques

Lpis mainly analysed in application to coefficient inverse heat conduction I
roblems to determine thermo-physical characteristics depending on J
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cem_erature. The analysis of recent publications [28] says that the most [
'popular" techniques for solving coefficient inverse problems are _ased on

I

iterative regularization principle [4].

In contrast to the number of publications on inverse heat transfer

problems, works on optimal design of thermal experiments are not very

numerous. One can see the bibliography on this topic in works [4,13].

l_thods for solving experiment design problems are based on a

finlte-dimensional approximation of unknown functions. In this case the

inverse problem is reduced to determining the vector of unknown parameters.

Then, properties of Fisher s information matrix are analysed, elements of

which are computed by using sensitivity functions. The elements depend on

experiment conditions (see, e.g. [4]).

The determinant of the information matrix or the square root from the

minimum eigenvalue of this matrix are used as the criterion of an experiment

oualitv. Experiment conditions are chosen by exhaustion of a given set of

Possible conditions [29], by the parametric accuracy analysis of the inverse

heat transfer problem solution [25] or by solving optimization problem

[30,31].

At last, only several publications are availaOle on analysing the complex

procedure of heat transfer processes identification and on simultaneous usage

of techniques for solving inverse problems and experiment design problems.

There exist isolated works devoted to design, carting out and data processing

of real experiments [32,33].

The main goal of this lecture is to demonstrate the efficiency of

parametric identification methods through the examples of

experimental-computational investigations of heat transfer processes.

INVERSE HEAr TRANSFER PROBLEMS

Many different particular inverse heat transfer problem statements are

considered in practice. To describe general features of methods and algorltnms

for solving ill-posed inverse problems and to avoid details it is convenient

to use the general inverse problem formulation in the operator form.

Let US consider an unsteady heat transfer process or thermal system,

state model of which has the form of a boundary-value problem

LI x _.,T, aT _T a zT ]
. _, _, _,u,v = O, x __ O , "r _ [ O,T ]

_s ax _x z ,n

( !

T(x,O) = T (x), x __ O = Q + F" 2
O

• . I ,,U = Vi, T I,

ax

x__C ( 3 )

where L_ J is a non-linear operator_ B (- j is an operator of Ooundarv

conditions; T is the state variable (temperature): T is time: x is space: u is

vector o+ characteristics of the system analysed: vLTJ is an external action.

in the model (1)-(3) the state variable T can be a scalar or vector function

Lof space and time. ]
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Fe The mo0el (i)-(3) is a direct problem and under given values for 7
xternai action v(r) an0 vector of characteristics u oermits to pre_Jict the

!

system s thermal state. If vector u is unknown or given with low accuracy, but

the_re is some additional information about the solution of the problem

1 J- (3 J, then an inverse problem appears for determining vector of

characteristics u. The additional information is formed on the basis of

measuring the state variable in a subdomain of O. When the state variable is

temperature, measurements are usually carried out in some number N of separate

points of the domain Q

T (X.,T) = f (T), i = I,N _ 4 )
_as i i

where X , i = L,N are coordinates of temoerature sensor locations. The

inverse problem is to determine u from conditions (i)-(4). By this, the

form of operator E9 as weli as the number of sensors N are chosen so that we

can provide uniqueness of the inverse problem solution [4].

[he state model (1)-(3) can be treated as the transformation Au of a

space of characteristics into a space of the state variable in measurement

points. As the result of measure_lents a vector-function f = ( f (m ) ,

f (rJ .... ,f _m)} is formed. The inverse problem is to determine u
Z N

Eomouted state variable in measurement points is equal to measured

this case the inverse problem (1)-(4) can be presented as a

operator equation of the first kind

I

so that

values, ln

non-linear

Au = f, u =_ U. f =_ F, A: U ,_ F , 5 _

where operator A is constructed on the basis of the mo0el (1)-(3#; U is the

solution space: F is the space of vector-functions Deing measure_J.

The main distinction of inverse problems is ill-Dosedness. The inverse
-I

operator A can be unlimited and small errors in the right part can lead to

large deviation in the solution. So, to solve inverse problems it is

necessary to use special, regulating methods [34].

It should be noted that the solution space U in the inverse problem

_5) is constructed by taking into account constraints arising from physical

point of view. For example unknown characteristics must be oositive in many

Eases.

To solve coefficient inverse problems the iterative

reguiarlzation metho_ has displayed quite a high efficiency. This

method is Oased on minimizing, Ov means of gradient methods of

the first order, residual functional

a(u_ = l]_a - f I]z ( _ )
F

The regularization oarameter is the number of the last iteration, which

is determined in the process of problem solving from a regularizing condition ,]
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J(u _ 6 ( 7 )

2
wnere o is the error of input data, calculated in space F.

It sroula be noted that for linear ill-posed problems the iterative

regularization method received severe mathematical substantiation, in a

nol-linear case such substantiation is not available. However, extensive

computational experiments confirm high efficiency of this method for solving

non-linear problems as well (see, e.g. [4,16]).

In constructing algorithms for solving coefficient inverse heat transfer

problems, wren the unknown characteristics depend on the state variable, a

common approach is the parametrization of functions sought for, in

particular by means of cubic B-splines [35]. The solution is sought for as

_n

z(T) = _ Pk_Ok(T)
k=t

(8)

where z(1) is an unknown characteristic; Pk' k = l,m are constant

oarameters; Pk(T), k = l,m is the given system of basis functions. The

• ]T
inverse problem is to determine a vector of parameters u = [Pi'Pz ' "''Pm '

the composition of which includes coefficients of approximation of all

functions sought for. An iterative procedure of minimizing the residual

functional (61 by using the method of conjugate gradient projection is Ouilt

via formulas

I T _ P 1r*t = Pv p k+ , kg k , r = 0,i,...,R, _ 9 )D k

gkr = Ok<r>+ /?rg:-i

r_ m

(_ 0 _'(r> j <r-s>) k
O ]<.=I k=

where P is the operator of projecting on the multitude W of admissible
'd

solutions: R is the number of the last iteration. The calculation of

gradient components Ok, k = l,m is accomplished through the solution of

a oounOary-value problem for conjugate variable [9]. An approximate method is

used to realize the projection operation [38].

A descent parameter is determined from the condition

[ r , ];. = At0 min J P (u + _'g )
r" - V

,v>o

t IC' )

LW ---_ • ]'T•
here g [ gx 'gz .... gm If one characteristic is unknown in
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nVerse mrobiem, then to solve a problem of minimization (iO) we can make use
f knci_n methods, such as a "golden section" method [36]. For multiDarameter I

inverse problems, of much greater com0utational efficiency is the technique

based on representation of a descent oarameter ,_ as a vector value [37].

Various modifications of this technique are described in [4]. Parameter ,_ is

determined for unconstraint minimization procedure and then projection

operations are successively realized for all unknown functions [38]. It

should be emphasized that in many cases good results have been obtained by

using unconstraint methods for minimizing the residual functional. The high

capacity for work of such iterative algorithms for solving coefficient inverse

problems is demonstrated, for example, in [4,i0,24,39,40].

OPTIMAL EXPERIMENT GESIGN

The input data for solving the inverse problem are formed basing on

information obtained in the result of corresponding experiments and

measurements. Under formation are two groups of values. The first group

includes values displayed in model (i)- (3), determining the conditions of an

experiment: a dimension of a specimen Q in study, duration of an experiment

r , initial distribution of a state variable T ix), external action V(TJ.
Tll O

Combine these conditions to vector

w = (Q._ ,T (x),vCr) } L ii j
m O

The second group of values characterizes the conditions for measuring a

state variable and in the case under consideration includes the sensor number

N and vector of their space positioning in the specimen X = [ X , X

X ]T l hese values make up a scheme or a plan of measurements
N

=CN,X ) 12 j

In total, vectors w and _ determine a plan of the experiment

_=(w,< } 13 )

The inverse problem (5) can be solved, generally speaking, with different

plans of the experiment D . But the results of studies have shoran that quite

an arbitrary selection of elements of the experiment plan (13) can lead to

large errors in the inverse problem solution [4,10,31,41]. Hence, a problem

arises on optimization or optimal design of experiments in identifying thermal

processes with the aim of providing maximum accuracy for the unknown

characteristics determination in the assumed mathematical model [42]. A search

for optimal plans of experiments leads to the necessity of solving extreme

Probl_ J
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F _ = Arg max _(_), _ _ FI
0

(14)

where '_(n} is the auality criterion of the experiment, characterizing t_

accuracy of solution of the inverse problem under analysis: _ is a set of

admissible plans.

The accuracy of solution of the inverse problem (5) is determined by

properties of the Freshe derivative A' of operator A, reflecting the nature

of error transformation of the right part f into errors of solution u [43]

It is possible to show [4] that the above properties of A are

characterized by eigenvalues Wk, k = l,m of matrix

M = ( _)j,k' j,k = 1,r,; )

where
i

j,k
N

N T
m

J" _ (T) e (X ,T) @ (X ,T )d"r
j L k t

O

15 )

_r), i = I,N are weight functions, giving a possibility to consider the
t

presupposed errors in the measurements of a state variable, __ [X,T) =
k

()Tkx,T;/C_Qk, k = l,m are sensitivity functions. For the inverse problem (5)

matrix ti0) coincides with the Fisher s normalized information matrix,

widely use0 in the theory of experiment design [44] The following values

can be used in particular as an optimization criterion: a square root from the
m

minimum eigenvalue _ Wrn_ n and a determinant detM =kQ_W k . The computational

experiments carried out showed high capacity for work of the given criteria

[4,52,35,41] . A set of admissible plans is formed with regards for the

conditions of unioueness of solution of the inverse problem and with

constraints, characterizing the capacity of the experiment equipment used and

that of measurements C4]

To determine the elements of matrix (15) it is necessary to calculate

sensitlvitv functions @ (x,T) , k = l,m These functions are calculateO
k

using a 0oundary-value problem obtained as the result of diferentiation of

relations (i)-(3) through parameters Pk ' k = I ,m Here, due to

non-linearitv of operators L and B, sensitivity functions depend on the

vector of unknown parameters u. Hence, it is possible to construct only

approximate, local ly optimal plans of experiments involving apriori

information about vector u [44]. The studies carried out show that apriori

information, usually available, gives a possibility to get iocal-optlmal plans

close enough to exact plans [4,41,46].

Using described methods for solving problems of optimal design of thermal

experiments there have been developed corresponding computational algorithms

based on the scanning method [45] and on the optimal control theory [31].

Their high efficiency is shown, for example, in [4,32].

L J
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_DENTI FI CArI ON OF EFFECTI VE
THERMOPHYSI CAL

HARACTERI s'rI cs OF COMPOSI TE MATERI ALS

The la_est t_xm decades witness constant increase of publications devoteO

to methods and aloorithms for solving coefficient inverse heat conduction

problems anO Zo their application. In fact, the first results of

investigations in this field were published in 1963 [47,48]. The main part of

subseauent works deal t with suggesting algorithms and analysing their

com_Jtational efficiency. Experimental-computational stuOies are considereO in

considerably smaller part of publications.

One of the main goal of investigations is to create a reliable

non-stationary method for Oetermining effective thermophysical characteristics

of composite thermal protective materials at high temperatures [39,49]. It is

clear toOav that such methods should be built by using identification

approacres icluding the solution of coefficient inverse heat conduction

problems and experiment design.

To illustrate the practical application of identification methods let us

consider determination of the effective thermal conductivitv for

glass-reinforced plastic on silicone binder, heated by a high-enthalpy gas

flow [32].

To realize a complex procedure of identification there has _ conducted

a number of experiments with a one-side gas-dynamic heating of flat specimens

of the material of 20 mm thickness. Temperature measurements at different

depth from a heated surface were taken by means of thermocouples. The nominal

heating conditions and duration of the experiments were given beforehand.For

control of its reproduction in the experiments and for formation of a bounOary

condition of the first kind, measurements have been used by the thermocouple

nearest to a heated surface. The location of these thermocouples in specimens

was further considered as the origin of a solid axis × The indications of

thermocouples located at the biggest distance from a heateO surface serveO as

the sec_nO Ooundarv condition of the first kind. The location of thermocouples

was determined by means of X-ray radioscopy. All subsequentexperiments showed

approximately the same results, heating conditions of all specimens being
similar to each other.

the mathematical model of heat transfer process in the material looked

llke a Ooundary-value problem for the non-linear heat conduction equation

]

I' SlC(F_ _r _× -_ , O<×<L, OxT__T ( 16 )
m

T(x.O) = T _0). 0 _ × _ L
0

17 )

T(O.r) = v (T;
I

i8 )

T(1,',-j = v (r_
2

19 )

The results of tem0erature measurements of 14) type in the internal

points of interval [O,L] served as input data for solving the inverse I
roblem on determination of function i.(T) The inverse problem analyzed has a ]
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Funique solutior, at N -> 1 [43.
Optimal planning of an experiment was made first. Since its heating

conditions and time were given, the control over the experiment quality was

carried out only by mesns of selecting an optimal plan of measurements (12).

For this purpose an extreme problem of measurement planning has been solved

I

': = Arg max @ [H(_ k<T_)]
"* 0 ' " '

_, _ Z ( 20 )

where -_ : ((n,X):N -> I, 0 < X < I, i:l.N )
i

To solve problem (20) there has been used a procedure of work [45] The

boundary conditions of the first kind (15),(16) are shown in Figure I. The

dependence k(T) obtained by traditional method served as apriori information

about the unknown function. Function k(T) was approximated by a cubic

B-spline of (8) type with "natural" boundary conditions [35] with the

parameter number m : 4. So, vector p : [ pk,k=l,4 ] was unknown. Sensitivity

functions _ (x,r), k : l,m were determined from a solution of
k

boundary-value problems obtained by differentiating relations (16)-(19)

through parameters Pk' k = 1,4.

The results of solving of a problem on selecting arJ optimal location of

one/ and two thermocouples are given in Figure. 2, where a change of the

experiment quality criterion is illustrated • [M_,A_T))] = 4 _ depending
m_n

on the sensors setting coordinates. For two sensors there are shown surface

sections _(X ,X ) by planes drawn through the point of maximum value of
I Z

criterion parallel to coordinate planes.

The results obtained show that in the analyzed experiment to provide high

accuracy of solution of an inverse problem one sensor should be set in the

narrow enough domain close to the origin of coordinates. Besides, in this

experiment two sensors will be sufficient since at N _ 2 the location

coincidence of the second and successive sensors seems most optimal. The

corJelusions made are fully confirmed by data of computational experiments

[32].

A solution of the inverse problem followed then using the procedure of

work [24]. A thermogram of the corresponding experiment is shown in Figure.

[. To verify validity of the measurement plan and to estimate the authenticity

of the inverse problem solution analysis was made of the effect of the initial

_guess about the unknown function on the solution [32]. The results of such an

analysis are given in Figure. 3.

It is seen that the solution of the inverse problem does not depend on

values of initial guess, thus proving high authenticity of identification

results obtained. For comparison on Fig. 3 there is also given a temperature

dependence of thermal conductivity obtained by the method of monotonic

heating. It is seen that in the high-temperature region there is .a

considerable difference of this dependence from that obtained from the

solution of the inverse problem. Here, the dependence k(T) obtained as a

result of identification provides much better temperature correspondence,

calculated from _163-(19), with values measured experimentally, this [_onfirming high authenticity of results as well. A
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It should be noted as a conclusion of this section that effective 1
hermophysical characteristics of high-temperature composite materials can

atrongly depend on heating conditions. It is caused by thermal destruction of

a binder [49], this process depending on heating rate [50]. The analogous

degendence takes place for semi-transparent materials [51]. To avoid this

factor, methods based on solution of inverse heat transfer problems have been

developed for determining heat transfer characteristics in more complicated

mathematical models taking into account effects of thermal decomposition

[25,3g.52,53] and heat transfer by radiation [40,54].

I DENTI FI CATI ON OF CONTACT THERMAL

RESISTANCES IN MULTI LAYER STRUCTURES

Contact heat transfer is important in different technical systems. The

main characteristic of this process is contact thermal resistance. At present

stationary methods are widly used to determine contact thermal resistances in

,different joints [55,56]. Non-stationary methods based on solving inverse heat

transfer problems are more effective (see, e.g. [7,17]) but in spite of the

fact that the first works devoted to such methods were published about twenty

years 2o [57-59], only isolated investigations are known in this field

especially experimental-computational studies. Works devoted to optimization

of experiments for identifying contact thermal resistances are also isolated.

The application of identification method is considered in this section to

determine thermal contact resistances between fuel and shel in fuel rods of a

nuclear-power reactor.Transient processes between successive stationary states

are _]alyzed when the reactor is started up for the first time.The results of

experimental-computational studies presented in works [33.60-S3] are breafly

dlscusseQ.

The mathematical model of a non-stationary heat trarlsfer process in a

fuel rod is given by the following boundary-value problem

C
1

OT 1 a
I

T _T xOx

_ _aT I

p. <T'.,-_--x] + %<x. ). Lo<X<L i O<T<--T ( 21
m

aT
2

C.,,T _ 1 a [>,2(T ; _xZ]x ax -
L <x<L . O<T<T ( 22

T (x.0) : T 0",.
I O,I

L" x-< L c 23 ]
0

T (x,O) : T 0),
Z O,Z

LSx<L ,, 24 ;
J. Z

t O

_X
=0 25

L
1 I 1

aT (L ,r,
1 I

ax : < <'Tz (L ,r ) )z _ OX

aT (L ._',>
1 t

26 ]

J
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V (L ,r)OFt ,
-_-< (T (L .-_)) - T (L ,r) - T (L ,r)

• i i _X i i 2 i

(27]

_T (L ,r)
. Z Z

,T (L <)) = __(T}[Tz(L ,T)-T {L,r)]
-2 2 2 ' _X e"

< 28 ")

In the model (21)-(28] initial temperature distributions To,,(x) and To,z(X)

ore computed by solving the corresponding stationary problem. Energy release

in fuel q, (x,r) was computed taking into account radial nonuniformity q(x)

and integral heat release qt(r ) measured by neutron detectors

q (x,r} : q(r)q(x') ( 29 )
./

where g, r ) :
qL '"

L
1

ZYJ" q(x):,dx

L
D

['he contact thermal resistance R is unknown but temperatures are avaible

measured in some points of the structure _nalysed

T (X .r) : f (T), i : I,N , j : 1.2 ( 30 )
me,'J_ ] . _- J , _. J

The inverse problem is to determine R from conditions (21)-(30).During

each transient regime contact thermal resistance R was considered as a

constant .The main goal of the investigation was to determine experimentally

depending on integral heat release q[.

[terative numerical algorithms were developed for solving inverse

problems analysed [60.62]. the residial functional being written down in the

form

N T

r: E [, {%,<x ,,,-e ,,,,] d-. + (L ,'x .o>-f <o>].;
., j,.. j,i. ,_. " a,t ._,t

]--1 t---I C

( 31 )

Algorithms for solving temperature measurements design were also

developed.These algorithms were used in earring out experimental-computational
studies of contact heat transfer processes in fuel rods. Some results are

Lbreafly discussed below. l
t_eneral sequence of stages was similar to that for thermophysical
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_arac.teristics identification.At the first stag_e parametric analysis of the 1

l

a<:curacv of inverse problem solution as well as optimal temperature

measurement desig*n were made. Input data for solving this problems one can see

in work [613.

The results of measurement design for one thermocouple are shown in

Figure 4.One can see that the thermocouple installation into the fuel is much

more effective.The conclusions made are fully confirmed by data of parametric

accuracy anal_zsis of the inverse problem solution (61).Computations show that

it is quite enough to use one thermocouple.Basing on the results

obtained.thermocouples were installed on the internal surfaceof fuel tablets

which had the shape of hollow cylinders.

The results of experimental data processing are illustrated in Figure

5.One can see that a decrease takes place when qt is approximately equal to

210W/cm.lt testifys to the fact that the fuel gets in touch with the shell.

For comparison the dependance analysed is shown here,which was obtained by

using the method of work 66#],The last one does not predict the moment of

touch and so gives much more optimistic results of safety analysis.

CONCLUSION

The results presented demonstrate high efficiency of methods for thermal

studies based on distributed parameter system identification. Such methods

facilitate to obtain trustworthy data for heat transfer characteristics and

increase the accuracy of mathematical simulation of thermal conditions.
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A NEW METHOD OF OPTIMAL DESIGN FOR A TWO-DIMENSIONAL

DIFFUSER BY USING DYNAMIC PROGRAMMING

ABSTRACT

Chuangang Gu (Ph.D, Prof.)

Moujin Zhang (Doctor Degree Candidate)

Xi Chen (Ph.D)

Yongmiao Miao (Ph.D., Prof.)

Dept. of Power Math. Eng.

Xilan Jiaotong University P. R. China

_L_ "3

A new method for predicting the optimal velocity distribution on the wall of a two-dimensional

diffuser is presented in the paper. The method by Principle of Dynamic Programming solves the

optimal control problem with inequality constraints of state variables. The physical model of

optimization is to protect the separation of the boundary layer while getting to be maximum pressure

ratio in a diffuser of a specified length (or getting to the shortest length in a specified pressure ratio).

The calculation results are fairly in agreement with the experimental ones. It shows that optimal veloci-

ty distribution on a diffuser wall should be as: the flow decelerates first quickly and then smoothly,

while the flow is near separation but always protects from it. The optimal velocity distribution can

directly be used to design the contour of the diffuser.

INTRODUCTION

A diffuser is an important part of compressors, fans and other air ducts. More and more atten-

tions have been paid to its design. In the past dozens of years, the popularization and development of

the optimization technique make it possible to design a diffuser with optimal velocity distribution

The index of optimizing a diffuser is to obtain the highest pressure ratio under the condition of a

minimum constructional length. Generally speaking, in order to get an optimal shape of a diffuser, it is

necessary to know an optimal velocity distribution on its wall. With the distribution, the boundary lay-

er can be avoided seperation and a maximum pressure ratio (or pressure recovery) can be obtained in a

specified length.

Nowadays, most designs of diffusers, which are two-dimensional or axial-symmetrical, are still

based on experience. Designers often use the criteria of the diffusing angle or the equivalent diffusing

angle and one-dimensional calculational method to design it. Obviously, it is too simple to reach the

index of the optimal design.

Stratford(1959) proposed that the loss in a diffuser with the minimum length is the minimum

while the boundary layer inside it is close to but just before occurrence of separation, then the velocity

distribution is the best and the shape of the diffuser is optimal. Some researchers, such as H. liebeck,

H. Fernboly, have used this principle to make some optimal designs.

Many authors also investigated the flow field in a diffuser and study how to control the flow

L,
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separaction.

Some authors attempt to use the optimal control theory to solve the optimal design of a diffuser,

because the governing equations of the flow in it are differential ones.

Gu and Ji (1987) proposed an optimal design problem of a diffuser, using the optimal control the-

ory and the boundary layer theory. The optimal velocity distribution on its wall was obtained by using

Pontryangin's maximum principle.

In order to meet the demands of engineering application, the optimal problem has to satisfy some

constraints in both aerodynamics and strength which can be divided into two parts: one is called as

constraint of state variable and another constraint of control variable. Those constraints are often

inequality and make it very difficult to solve the problem in mathematical treatment.

It is well known that Pontryagin_s principle can only solve the optimal control problem with con-

straints of control variables. To overcome the difficulty, many authors have done some research work

and modifications such as continuous transfer techique (Jocobson, 1969; Gu, 1987) and expanded pen-

alty function method (Gu and Miao, 1987).

However, for a problem with more inequality constraints of state variables the treatment is not ef-

ficient which have been stated by Gu and Miao(1987). That is to say, The more the constraints, the

more the difficulties. On the contrary, the principle of dynamic programming is quite good at treating

of state and control constraints. The more the constrains, the faster the calculation, because the numcr

of considered states and decisions decreases in seeking optimal decision.

In the present work, a physical model and a mathematical expression for dynamic programming

are established and calculated. The result yielded by the method is quite in agreement with not only the

experimental ones but also thc result by Pontryagin's maximum principle.

ESTABLISHMENT OF AN OPTIMAL DESIGN PROBLEM OF A DIFFUSER

It is well known that the flow losses in a diffuser mainly consist of separation loss and friction one.

Obviously, the former is greater than the latter. The friction loss is always inevitable. However, it

doesn/t vary greatly because the friction coefficient is approximately a constant in the fully-developed

turbulent flow. The total friction loss can be considered as increasing proportionally with the axial

length of a diffuser. So the key to designing an efficient diffuser is to avoid the separation of boundary

layer. Considering the two factors mentioned above, Stratford. (1959) proposed that the properties of a

diffuser with the minimum length and without boundary layer separation is optimal.

Generally, the turbulence degree at the inlet of a diffuser in engineering is so high that we can as-

sume for convenience that the boundary layer has become a turbulent one at the inlet edge. And

incompressible flow is only considered in present work.

The typical expressions of a optimal problem for a diffuser are as follows:

A) Pressure rise coefficient is maximum (i.e. the discharge velocity is minimum) under the condi-

tion of a provided constructional length and without separation of the boundary layer.

B) The length of a diffuser is minimum under the condition of a provided discharge velocity (i.e.

the pressure rise coefficient is known) and without separation of the boudnary layer.

It can be proved that the expressions A) and B) are correlative.
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The separation of the boundary layer is a very complex pr'oblem. According to the change of ve-

locity in main flow, the separation of boundary layer can be predicted by some experimental formulas

to some extent. The following equations are adopted as the basis of solving the optimal problem, (Ref.

1,3,4,5,6,7,8,9, I0).

The velocity shape factor of boundary layer is introduced as follows:

6 2du ,, re=l/4

F- Udx Re a_ {m 1

where

u d U62
6: =f_U(1--U)Y Re6, --- v

turbulent flow

laminar flow (1)

U is the velocity of maiia flow.

F > 0 denotes acceleration flow, and F < 0 deceleration one. So F can be used to judge whether the

separation happens or not.

For a deceleration flow, the relationship between 62and U is as follows (Ref.1) :

U62_1/' = 62 dU _L) _/'d---[ 62 (--_/ ] 0.0175 - 4.15-_--_xx ( (2)dx

For convenience, the length of a diffuser, L, is used as a characteristic length; the velocity at the in-

let, C, as a characteristic velocity. Then Eq. (2) can be rewritten in a non-dimensional form. The

non-dimensional length of a diffuser contour is S = X / L, the non-dimensional velocity V = U / C,

the non-dimensional momentum thickness 0= 62/L. So the Re 62 is

Re,h = U. 62/v= V. O. Re °

where Re 0= C • L / v at the inlet of the diffuser.

Then Eq. (2) becomes as:
d

riO(Re • V " O) '/4 J_ 0 dV (Re o V . O)
1/4

d---s o =0.0175 - 4.15- _ d---s- " (3)

Substituting the non-dimensional form of Eq. (1) into Eq. (3), we yield
dO -,t4

--(0.014-- 3.52 • F)(Reo • V • 0) (4)ds

According to the result of Nikuradse's experiments, Buri proposed that the boundary layer will sepa-

rate when F is not greater than -0.06. As stated by Gu and Ji(1987) to ensure the flow in a diffuser to

be far from separation, we utilize the limit of F as :
- 0.04 _< F _< 0

MATHEMATICAL EXPRESSION OF THE OPTIMAL PROBLEM

The mathematical expression of the index of optimization A) is as follows:

Index function:

J(*)= V( * )-* min

$,t.

(5)
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dV F V 3/4 0-5/4 Re-'�4
ds *

dO -1/,

ds (0.014 3.52 • F)(Reo • V • 0)

0 > r >i - 0.04

V(o) = 1, 0(o) = 0
o

V( * ), O( * ),.#ee

So the mathematical expression for dynamic programming solution is as follows:

Index function:

(6- 1)

(6- 2)

(7)

(8)

(9)

s.l.

1

J(1) = fo FV3/40 -5/'Re_l/'ds --* rain

dV / ds = FV3/'O-5/'Re -'/"
o

dO/ds = (0.014- 3.52F)(Reo VO)-I/"

initial condition: V(o) = 1 0(o) = 0
o

control constraint: - 0.04 _< F < 0

state constraint: 0<V<I 0 _< 0
o

Quantizing the equations listed above, we yield:

J= min • F(k)V(k)3/40(k)-5/4Re-1/4
o

r(k)

V(k + 1)= V(k)+ AS* [ F(k)V(k)'/'O(k)-5/'Re: 1/" ]

0(k + 1)= 0(k) + AS • { (0.014 - 3.52F(k)[Reo V(k)O(k)] -1_, }

- 0.04 _< F(k) < 0

0 < V(k) <_ 1

o < 0(k)
o

and the iterative relation becomes

(10)

(6- 1)

(6 - 2)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

J(V,O,k)= min{ AS * [r(k)V(k)'/'O(k)-'/'Re -"'- }
o ] + J(V,O,k + 1)

r(_ I

.r(V,O,N) = 0

(20)

CALCULATION RESULT AND ANALYSIS

In calculation, Reo and N are taken as 10 6 and 10 respectively. The state variables and control

variables are quantized respectively. The sets of admissible state variables are as follows:

V = { 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}

0= {0.00226, 0.00508, 0.00781, 0.01058, 0.01336, 0.01890, 0.02168, 0.02445, 0.02722, 0.03}

Then the allowed quantized states are:
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f (0.4, 0.00226), (0.4_, 0.00508), (0.4, 0.0078), .--,.-.,..-,.--,.--,(1,0.03)}

And the set of admissible control variable is as follows:

F = I"-0.04, -0.035, -0.03, -0.025, -0.02, -0.015, -0.01, -0.005 }

The two-dimensional dynamic Programming Computatinal procedure is used because there arc

two state variables, the calculation procedure is presented in the computer flow chart. The initial value

of V and 0, that is, the values at stage o, are taken as 1 and 0.00226 respectively. The calculation re-

sults at stage 5 are presented in Table 1. There is only a part of all results because the results are too

many to list them all. At each stage, a similar table can also be listed.

In the table 1, a grid point stands for a allowed quantizcd state, the value put to the right-up of a

grid point is the optimal value of index J at this state, and the one put to the right-down of the grid

point is the corresponding optimal value of control variable F.

Computer flow chart.

[Begin]

Giving the maximum stage number N. Quantizing the state variables (V and 0) and

the control variable F

K=N-1 ]

For each allowed state, calculating the index value J by Eq.(20) according to the set

of allowed control value F. Finding the minimum value of index value J and corre-

sponding control value F. The J and F are taken as the optimal values of index and

control variables respectively for this state

K=K-1t

Giving the values of V and e at 0 "]stage

V@
J

=0 ]
k

Calculating the optimal value F(k) by interpolation at stage k, then calculating the

values of V(k+l) and 0(k+l) by Eq.(15) and Eq.(16)
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As shown in Fig. 1, curve ABC is an optimal velocity distribution of the diffuser. The results are is

quite in agreement with the experimental data and the results calculated by Pontryagin's maximum

principle by Gu and Ji,(1987).

The optimal velocity distribution ABC is also called as an optimal deceleration curve for a

diffuser. In the range above the curve, including the curve, there is no separation while F is not less

than ---0.04; on the contrary, in the range under the curve, separation will happen. So the curve ABC is

a critical line (F = -0.04) between separation and non-separation.

Drawing a deceleration curve AB'C' in the nonseparation range, we can find that for a diffuser

with a specified length, the discharge velocity V" is always less then V'. On the other hand, for a speci-

fied discharge velocity V' (which menas a specified pressue rise coefficient) the corresponding optimal

length S" is always less than S'. That means reducing velocity along the optimal deceleration curve

ABC will yield the maximum pressure rise coefficient in a specified length or the minimum length of a

diffuser in a specified pressure rise. In this case, the length is minimum and the loss is nearly minimum

because there is no separation.

From the physical explanation of the optimal deceleration curve in Fig.l It is also proved that the

two expressions of index functions A) and B) of the optinal control problem are correlative. That is,

the optimal velocity distribution obtained by one index function can satisfy another automatically.

THE CALCULATION OF THE DIFFUSER CONTOUR

The contour of the diffuser is calculated by means of the optimal velocity distribution on thc sur-

face, so that it is also called as optimal design problem or inverse problem. It is well known that solving

the problem directly in X-Y plane will involve non-identifed of calculated region. So coordinate

transformation is neccessary. It is the easiest way to transfer the X-Y plane to O-it ' plane.

The governing Equations. in O-W plane has been deduced strictly in the paper as:

Taking an element in X-Y plane and considering incompressible, potential flow, the continuity

equation and non-rotation equation are as follows:
aV aV

+ _...z_y ----0 (21)
ax ay

aV _V
y .x = 0 (22)

ax ay

Velocity vector is
V= IVl" (i-. cos/_ + .7" sinB) (23)

Where IVl is the amplitude of V. /7 is the angle between Vand coordinate line X.

The transform relation between X-Y plane and _-_I' plane is:

.f- (Y,,,..f,> - r'® ..f,_)lJ _ (24)

.fy = ( - X v .f ® + X ® " .fv ) / J J

Where J is Jacobi matrix.

Substituting Eq. (23) and Eq. (24) into Eq.(21), because of J=#0, then we yield:
aV aV

--_(Yvcos/3- Xvsin _ )+ _--_(- Y®cos_+X_sin/3 )
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asinfl acosfl) asinfl . acosfl,
+ V. (-X. a--d- + Y*_ + V(X® aV r®-_--_ = o (25)

The four items on the left side of Eq. (25) are as follows respectively,

aV aV J 2 2
a---_ " (Yw " cosfl- Xvsinfl)= aO-- " Xv + Yv

aV

a--'_ " ( - Y* " cosfl + X, sinfl = 0

_ asinfl . acosfl_v.

V. (X_ asinfl , acosfl aft x/ 2 2aW r®_) = V • a--_ " X_ + Y®

In deducing the definations of normal and tangent unit vectors of equal • and equal W lines, Eq.

(25) can be rewritten as,

a--_ " Xv + rv + V-_ X e + Y® =0 (26)

It can be easily proved that:

_ 2 2 ,/2 2Xv + Yv = X, + Y, = V/J

And substituting it into Eq.(26), finally, the continuity equation in @-_ plane can be given as:
alnV aB
a---_ + J-_ = 0 (27)

In the similar way, the non-rotation equation in O-_ plane is:

aln V aft = 0 (28)
a_ aO

Two Laplace's Eqs. can be obtained from Eq. (27) and Eq.(28):

a21nV a21nV
-- + --0 (29)
a2_ aO 2

+ -- = o (30)
aO 2 aW 2

The velocity distribution within the diffuser can be obtained by solving Eq. (29) with ADI

method. Then from Eq.(28) the values of fl on the top line (q' = 0 or h_ - I) of the potential flow region

can also be yielded, so the shape of potential flow region can be defined. The diffuser contour can be

modified by adding thickness of boundary layer. The calculation result is shown in Fig.4, the line of

Y / L = 0 is the central line of diffuser. The shape is quite similar to the real size of B. S. Stratford's dif-

fuser. The equivalent diffusing angle of the diffuser is 19 ° (integral angle), and is much greater than

ordinary recommended angle.

CONCLUSIONS

The optimal deceleration curve (i.e. optimal velocity distribution) on the wall of a diffuser is first

obtained by using the principle of dynamic programming. In solving optimal control problem of fluid

mechnics with inequality constraints of state and control variables, the dynamic programming method

has many advantages over others. The physical model of optimization for a diffuser is to avoid the
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separation of boundary layer while getting to the maximum pressure rise in a diffuser of a specified

length (or getting to the shortest length in a specified pressure rise). The calculation results are fairly in

agreement with the experimental ones and the results calcaulated by Pontrayagin's maximum principle.

The optimal velocity distribution on a diffuser wall should be as: the flow decelerates first quickly

and then smoothly, and the flow is near separation but always protects from it. The optimal velocity

distribution can also be expanded to design an unsymmetric diffuser.
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0.780
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0.750 0.763 0.776 0.789 0.803 0.818 0.842 0.870 0.930
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0.822 0.831 0.840 0.849 0.858 0.867 0.879 0.907 0.993

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.863 0.870 0.877 0.884 0.891 0.897 0.906 0.926 1.017

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.890 0.895 0.901 0.906 0.912 0.917 0.924 0.938 1.028

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.909 0.913 0.917 0.922 0.926 0.931 0.936 0.947 1.031

-.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040 -.040

0.923 0.926 0.930 0.934 0.938 0.941 0.946 0.954 1.030

-.040 -.040 -.040 -.040 -.040 -.040 -.040 ;-.040 -.040

0.935 0.938 0.941 0.944 0.948 0.931 10.954 0.961 1.028

-.040

V=O._5 V=O.§O V=0.75 V=o.?o V=o._b v=o._o v=o.5_, v=0.50 v=0.45

Table l

L J
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ABSTRACT ......

It is known from the LighthilFs exact solution of the incompressible inverse problem

that in the inverse design problem the surface pressure distribution and the free stream

speed can not both be prescribed independently. This implies the existence of a constraint

(regularity condition) on the prescribed pressure distribution. The same constraint exists

at compressible speeds. In this paper, a well-posed inverse design method for transonic

airfoil is presented. In the method, the target pressure distribution contains a free

parameter that is adjusted during the computation to satisfy the regularity condition de-

rived in this paper. A few design results are presented here in order to demonstrate the

capability of the method.

INTRODUCTION

Recently, a number of design methods have been developed and used for the design

of transonic airfoils and wings. Slooff t reviewed these methods and divided them into

three major categories: indirect, inverse, and aerodynamic optimization. Indirect meth-

ods are characterized by the fact that the designer has no control over either the

aerodynamic quantities or the geometry. The hodograph and fictitious gas methods are

in this category. In inverse methods, the classical inverse problem of aerodynamics is

solved. The designer specifies an arbitrary pressure distribution on an airfoil or wing,

while the geometry of the airfoil or the wing that realizes the given pressure distribution

is determined as the result of the solution. Aerodynamic optimization methods are those

in which a nonlinear optimization algorithm is linked with a flow analysis code to mini-

mize or maximize some aerodynamic object functions such as the lift-to-drag ratio.

The conventional inverse design methods are the most used in the industry applica-

tion. The currently existing inverse methods for transonic airfoil design can be subdi-

vided into two categories: (a) methods utilizing Dirichlet-type boundary conditions de-

rived from the target pressure distribution; (b) methods utilizing Neumann-type bound-

ary conditions in combination with some geometry correction procedure (residual- cor-

rection method).

In fact, in inverse problems, both a Dirichlet- and a Neumann-type boundary con-

dition must be satisfied on the airfoil contour to be determined. This gives rise to a

nonlinear problem with unknown boundary to be solved iteratively. In the first

L approach, the required target pressure distribution is imposed on an initial airfoil as a
..d
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Dirichlet boundary condition, while airfoil geometry corrections are derived by inte-

grating (either explicitly, or in some implicit manner) the transpiration mass flow over

the initial airfoil. The Neumann boundary condition is satisfied at the end of the

iterations.

In the second approach, the pressure distribution on an initial airfoil is determined

by the use of an analysis code (Neumann boundary condition), and the residuals (i.e. dif-

ferences between target pressure distribution and pressure distribution on the airfoil of

the current iteration) are transformed to airfoil geometry corrections using some relative-

ly simple approximate inverse methods. Here, the Dirichlet boundary condition is satis-

fied at the end of the iterations.

The main advantage of the iterative Dirichlet-type method is rapid convergence,

provided closure and regularity conditions are satisfied. This kind of methods has been

developed by Volpe and Melnik, 2 Carlson 3 and Tranen 4 for airfoils, Henne 5 for wing,

and Shankar 6 for wing / body designs. But in most of these methods, the regularity con-

dition is obviously not taken into account.

The main advantage of the residual-correction method is its simplicity. Only a small

investment is required, because any existing transonic analysis code can be used without

modification. Efforts can be concentrated on coding a simple approximate inverse rou-

tine base on a suitable approach, and coupling this to the analysis code. Another advan-

tage of this kind of methods is that the analysis code can be easily replaced with more

advanced codes when they become available. This approach was used by

Davis, 7 McFadden, 8 Fray et al, 9 Greff and Mantel. '° Takanashi _1 has developed a

three-dimensional transonic wing design method based on this approach. The geometry

correction problem is formulated in a three-dimensional transonic small-disturbance in-

tegral equation form and is numerically solved.

It was demonstrated by Lighthill _2 that a unique and correct solution to the inverse

problem of 2-D, incompressible flow generally does not exist unless the prescribed speed

distribution satisfies a certain integral constraint (regularity condition) arising from the

requirement that the speed in the free stream be equal to one (or any other specified val-

ue). Thus, in order to assure that a solution to the inverse problem exists, some freedom

must be permitted in the prescribed pressure distribution to allow the regularity condi-

tion to be satisfied. This can be accomplished by introducing a parameter into prescribed

pressure distribution. In transonic flow the similar constraints have never been properly

formulated. Volpe and Melnik 2 proposed an inverse design method for transonic flow

which was aimed at providing a treatment of such kind of constraints on the target speed

distribution numerically.

In this paper, we formulate a well-posed inverse design method for transonic airfoil.

This method is a residual-correction type approach, in which the procedure to determine

the geometry correction is similar to the procedure used by Takanashi for his

three-dimensional wing design method. An integral constraint (regularity condition) is

derived and used in the method. Thus, a parameter is introduced into the target pressure

distribution, and this parameter is determined as part of the solution according to the

regularity condition.

!

J
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FORMULATION OF THE INVERSE PROBLEM

The full potential equation can be written in terms of the perturbation velocity po-

tential as

(I_M2)__+_ =K0_O_(I-2) --

Where M= is the free stream Mach number, K(?,M= ) is a transonic similarity

parameter, ? is the ratio of specific heats, (_-,z--) is a Cartesian coordinate system, and H

represents all the higher order terms.

the tangency condition on the airfoil may be written as

G(_-, + o) = f'_ (;) +Q- (2)

where f+ (x-) and f_ (x-) are the equations of the upper and lower airfoil surfaces

respectively, and Q represents all the higher order terms.

the pressure coefficients on the airfoil surface are expressed as

c± (_) = - 2_; (_-, +_0) + s (3)
where S represents all the higher order terms.

In a residual-correction method, the solution _(_-,z--) of Eq. (1) for an initial

airfoil f ± (x-) has been obtained by means of an existing analysis code, the objective here

is to determine the amount of the geometry correction Af± (x) corresponding to the

pressure difference ACp± (x) between the specified and calculated pressure. If a small

perturbation A_(}-,z-) is further introduced, we can obtain the potential equations for

A_(}-,_) according to the transonic small-disturbance theory

a_o + a,n,, - Ox (_ + A_°x ) - 2 _o (4)

A(p, (x, i 0) = Af_ (x) (5)

fl'
zXC± (x) = - 2Xa_ _ (x, + o) (6)

here fl = J 1 - M = and the new variables have been introduced as
oO '

x= _, z= fl_, _p(x,z)= (K/ fl_ )$(_,_), f ± (x)= (K/ fl_ )f+ (x-) (7)

By applying Green% theory to Eq.(4) and introducing a decay function similar to

that used by N_rstrud _3, we can get the integral equations

l 1

Au,(x) f= - W (x,O;_,O)Awi(¢)d_ + G (x)
T_ 0 x a

--no [I (x,¢,+ O)G(¢, + 0)+ I (x,¢,- o)a(x,- 0)]d¢ (8)

aw.(x)=! )--
_Jo ¢-x
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i

--- [I (x,_, + 0)G(¢, + 0)- I (x,¢,- O)G(x,- O)]d_
_ 0 a

here

(9)

Au (x) = A_ox(x,

Auo(x) = ACx(x,

Aw (x) = A_o (x,

Aw. (x) = A_o (x,

+ 0) + A_o (x, - 0)

+ 0) - a_o (x, - 0)

+ 0) -- A_o (x, - 0)

+ 0) + A_o (x, - 0)
I

qJ(x,z;¢,() = ln[(x - ¢)2 + (z - ()2] i

l[ , 2]a(x,z) = -_ (_o + A_o ) - _o

I (x,¢, +_ ) = q_ _, (x,O;_,_)exp[- 2R ± (()_r]d(
o

I (x,_, +_ ) = o (x,O;_,_)exp[- 2R ± (_)_]d¢

R ± (x) = If'' (x) / _ (x, + 0) I
J. x --

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

For convenience, the correction function Af+ (x) is split into symmetric Afs(x) and

antisymmetric Af,(x) parts

Af (x) = Af÷ (x)- Af_ (x) (19)

Afa(x) = Af+ (x) + Af_ (x)

Since Aft(x)= Awa(x), the antisymmetric part can be determined by direct evaluation

of the right-hand side of Eq. (9). On the other hand, since Aft(x) = Aws(x). the symmetric

part must be solved implicitly. Consequently, the correction Af± (x) is obtained by inte-

grating Aws(x) and Awa(x) with respect to x.

CONSTRAINTS FOR INVERSE PROBLEM

In the incompressible flow, it was demonstrated by Lighthill, t2 using conformal

mapping method, that the geometry of an airfoil for a given speed distribution can be de-

termined only if the prescribed speed distribution satisfied the following three integral

constraints

f2*loglq° I do = 0 (20)
0 q_

2x

f loglq° [ cosoJ dco=0 (21)
0 q_
2x

I loglq°l sino9 do9 = 0 (22)
o q_

here q0 is the prescribed speed distribution on the airfoil surface, qoo is the speed at infin-

ity, co is the polar angle in the transformed plane. The first constraint known as regulari-

ty condition is a consequence of the fact that the speed at infinity is qoo. Eqs. (21) and
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t 22) together express that the airfoil is a closed contour and the angle of incidence is zero

(or any other specified value).

In order to formulate the regularity condition for transonic flow, differentiating

both sides of Eq(4) with respect to x, we have
,,2

V 2 F(x,z) - o G(x,z) (23)
¢3x2

here

Z(x,z) = zX_o_(x,z) (24)

with a Dirichlet-type boundary condition

K AC ± (x) (25)
V (x,+0)=V o(x)= 2fl 2

and a constraint at infinity
2

A_0 (x,z)--) 0 ; (x 2 + z --, oc ) (26)

Now we use the transformation

(}) ( e-'__)
1 1 1 1 _0, 1

T(z)=x+iz=-_ "Z+ + i =-4 re + +-2 (27)

i60 .

where Z = re _s the complex variable in the transformed plane. The entire plane in the

physical plane is mapped onto the outside of the unit circle, the chord of the airfoil (z = 0,

0<x< 1) is corresponds to the unit circle (r= 1, 0<a)<n) on the transformed plane.

Substituting Eq. (27) into Eq. (23) yields

_ 2 V(r,co) = Z / IT'(Z)[ 2 (28)

where

L(r,og) = _ 7 _ +2 + + r OG og OGOx Ox JO-_-d_ _X T Or2 Ox 2 _r + 2Ox _o9

The boundary conditions in the transformed plane are

V(r,¢o) l,. 1 = Vo (¢o) (29)

V--* 0 ; (r _ oo) (30)

By applying Green's theory to Eq.(28), an integral expression can be obtained as
2

r I -- I f2. Vo(_ )
V(r l 'og l ) -- 2n -o r t - 2r _c°s(c° - o91) + l do9

2

1 12"l , --2rr,cos(og--oJ,)+r L
+2-_Jo J log -i ............ rdrdo_ (31)

1 Lr|r--2rr|cos(m--o91)+ 1 IT'(z)I 2

If r z -. oo, the above equation becomes

f 2, 2, _ Llogro V°(og)dog=l f ]T'(x)12-o-,
' rdrdo9 (32)

In physical plane, Eq. (32) can be written as

f' fl[A_o. (x, + 0) - A_o (x, - 0)]co. dx = logt t32G(x,z) dxdz (33)
0 x _X 2
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Using an integration by parts and introducing the decay function, we can obtain the

final form of the regularity condition
1 1

f Au (x)oJxdx= : [I (x,+O)G(x,+O)+I (x,-O)G(x,-O)]dx (34)
o o

here
2

f°_rr -- rI (x, + O) = xx _ exp[- 2R + (x)z]dz (35)
v -- 0 r

The above discussion indicates that the prescribed pressure distribution should con-

tain an adjustable parameter to guarantee that the regularity condition is satisfied. Thus

the surface pressure distribution is to be prescribed in the form

C + (x) = F ± (_,x) (36)

where a is a parameter that is found as part of the solution. For convenience, the follow-

ing form of Cps is used in this paper:

Cp_:L (x) = aF ± (x) (37)

In order to assure that the resulting airfoil has a specified trailing edge gap, the fol-

lowing closure condition must be satisfied:

flAw (x)dx = 0 (38)
0

This closure condition can assure that the trailing edge thickness of the current

airfoil is always kept equal to that of the initial airfoil.

Although the regularity condition in closed form (34) is obtained from the simple

transonic small disturbance theory with NSrstrud assumption, its practical utility wilt be

shown by numerical examples in the following section.

NUMERICAL AND COMPUTATIONAL ASPECTS

In order to discrete the integrals appearing in Eqs. (16) and (17),

integration with respect to ( is divided into subintervals. Assuming that R

stant on each subinterval, Eqs. (16) and (17) can be expressed as
1

u .CO.+_A_.
. W ¢_,(x,O; _,()d( (39)I (xd. + o) = .-o eXpt-2R ljc .,c

1

1,,(x,¢, 4- O) = _ exp[- 2R ± (_)_' ] a qJ¢,(x,0; ¢,0d( (40)
,, - o " C,, - _.&_,,

The range of integration with respect to x is also divided into subintervals, and on

each of subinterval Au (x), Au,(x), G(x,+O), and Aw°(x) are assumed to be con-

stants, while Aw(x) is assumed to vary linearly, the final expressions of Eqs. (8) and (9)

in discretized form are as follows:

8 $ _8

AU (X,)---- ElzikAw (Xk_!)+G (xi)-- vikG(xk,q-O)+V_kG(Xk,--O ) (41)
.I k-I a 2 k-I

the range of

± (8)( is con-

L J
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[
! I

Aw (x,)= _U,kAu (xk)-- _ v,kG(xk,+O )-v,kG(xk,-O ) (42)
k_t k-I

The discretized form of Eq. (34) and (38) can be expressed as

_Au°(x, )(_+_ --e) _} ) = vlG(x,,+O)+_iG(x,,-O ) (43)
i-I i-I

I

1)](xi+l --x 1)=0 (44)Y [Aw )+Aw
t-I

where the coefficients

s a j _s a V V i]'_ik' _ik' Vik" ik' Yik' _ik _ i'

are the integral expressions on each of the subinterval. The full expressions are omitted

here.

In order to improve the convergence, the following modifications have been taken in

this paper:

1). A Riegels type of leading edge correction is taken in the method. The purpose of

such correction is to remove the singularity at the leading edge of the round-nosed

airfoil.

2). In order to increase the ability to deal with the shock, an artificial viscosity term

is added to the integral equation method.

3). A Smoothing-relaxation procedure is proposed and used in this paper.

The inverse problem can be solved by the iteration process as follows:

1). The flowfield is solved for an initial airfoil f,. (x) by a direct analysis code. From

the calculated pressure distribution Cpe (x), and the target pressure distribution

C_s+- (x), the residual AC_+ (x) = aCps ± (x)-Cp± (x) can be obtained.

2). The adjustable parameter o- is determined from the regularity condition (43).

3). The geometric correction Af± (x) is determined by solving the equations

(41)-(42). Thus a new geometry is obtained from the following Smoothing-relaxation

procedure:

*+ * [ ( (x,+_))] (45)f+ '(x,)=f±(x,)+_ Af*_+'(x,)+0.5 Af*_+'(x;_,)+Af*_ +'

where _ is a relaxation factor.

The same process is repeated until the calculated pressure distribution agrees with

the prescribed one.

Several test cases are presented to show the validity and applicability of the proce-

dure. A nonisentropic potential solver for 2-D transonic flow _4 is used as the analysis

code.

In the first example, the target pressure distribution is taken from the result of

RAE2822 airfoil, the free stream Mach number is 0.73, and the angle of attack is

e= 2.05 ° . The initial airfoil is NACA0012 airfoil, the initial angle of attack is cc=0.0.

After 12 design cycles, the RAE2822 airfoil is already recovered. Indeed the designed

airfoil is rotated in a clockwise direction by 2.05 ° with respect to the original airfoil.

This is because the initial angle of attack is chosen to be 0 ° , the angle between the free

stream and the X-Axi is always 0 ° during iterations. Fig.l shows the target and initial J
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pressure distribution. Fig.2 shows the convergence procedure of the pressure

distribution.

The second example is chosen to show the function of the regularity condition. In

Ref. [15], Strand gave a velocity distribution which did not satisfy the Lighthill's three in-

tegral constraints in incompressible flow, hence there is no airfoil corresponding to this

velocity distribution. Strand modified this velocity distribution according to the

LighthilFs constraints, and designed the airfoil corresponding to the modified velocity

distribution, the results is showed in Fig. 3. Now, we calculate this example using the

present method. For convenience, only the velocity distribution on the lower surface is

multiplied by the free parameter a. After 7 design cycles, the converged solution is ob-

tained, the velocity distributions are given in Fig. 4. In this case, the output velocity dis-

tribution on the lower surface is not consistent with input velocity distribution, this is be-

cause the free parameter a is not equal to 1, but equal to 1.07. The results show that the

method can adjust the improperly input velocity distribution to the acceptable velocity

distribution automatically, and design the airfoil corresponding to the modified velocity

distribution. Comparing the figures the present result is closer with input data than

Strand/s one. On the other hand, if the regularity condition is not included in the

method, the design procedure will not converge for this example.

CONCLUSIONS

A regularity condition in closed form for transonic flow is presented in this paper,

and a well posed inverse design method for transonic airfoil is formulated. The results

show that the method is a reliable and efficient method for the design of airfoil at

transonic speeds. When the target pressure distribution is not properly given, the code

can adjust the target pressure distribution automatically and design the airfoil corre-

sponding to the modified pressure distribution.

REFERENCES

1. Slooff, J. W., "A survey of computational Methods for Subsonic and Transonic

Aerodynamic Design', Paper at ICIDES- I, Austin, Tex., U.S.A., 1984.

2. Volpe, G. and Melnik, R.E., "The Role of Constraints in the Inverse Design Problem

for Transonic Airfoils", AIAA Paper 81-1233, 1981.

3. Carlson, L. A., "Transonic Airfoil Design Using Cartesian Coordinates," NASA

CR-2578, 1976.

4. Tranen, T. L., " A Rapid Computer Aided Transonic Airfoil Design Method",

AIAA Paper 74-501, 1974.



549
Third International Conference on Inverse Design Concepts and Optim_.ation in Engineenng Sciences
(ICIDES-IIIL Editor: G.S. Dulik;ravi_h. Washington P,C,, O_tober 23-25. 1991.

5. Henne, P. A., "An Inverse Transonic Wing Design Method", AIAA Paper 80-0330,
1980.

6. Shankar, V., "A Full Potential Inverse Method Based on a Density Lineaerization

Scheme for Wing Design", AIAA Paper 81-1234. 1981.

7. Davis Jr., W. H., "Technique for Developing Design Tools from the Analysis Meth-

ods of Computational Aerodynamics', AIAA Paper 79-1259, 1979.

8. McFadden, G. B., "An Artificial Viscosity Method for the Design of Supercritical

Airfoils', Ph.D. Thesis, N. Y. University, 1979.

, Fray, J. M. J., Slooff, J. W. et al., "Inverse Method with Geometric Constraints for

Transonic Airfoil Design", Int. J. for Numerical Methods in Engineering, Vol. 22,

pp. 327-339, 1986.

10. Greff, E., Mantel, J., "An Engineering Approach to the Inverse Transonic Wing De-

sign Problem", Comm. Appl. Num. Meth., Vol. 2, pp. 47-56,1986.

11. Takanashi, S., "Iterative Three-Dimensional Transonic Wing Design Using Integral

Equations _, J. Aircraft, NO.8 Voi.22, 1985.

12. Lighthill, M. J., "A New Method of Two-Dimensional Aerodynamic Design", ARC

RM 2112, April. 1945.

13. NCrstrud, H., "High Speed Flow Past Wings", NASA CR-2246, 1973.

14. Zhu Z. Q., Bai Xue-song, "The Computation of Transonic Analysis and Design',

Acta Mechanica, 78, pp 81-94, Springer Verlag, 1989.

15. Strand, T., "Exact Method of Designing Airfoils with Given Velocity Distribution in

Incompressible Flow', J. Aircraft, Vol. 10, No. 11, 1973.

L ]



550

Third International Conference on Inverse Design Concepts and Optimtzauon in Enginecn,-ag Sciences
(ICIDES-HI). Editor: G.S. Dulikravich. Washing,ton D.C..October _'_ "_ 1901

I Cp -- Target Cp Calculated

-0.70 -

0.30

1.30

-0.70

0.30

!

---r- r -! ----r' --T---7---_r----r _ X/C

0.00 0.50 1.00

Result of 2nd iteration

Cp

-0.70

0.30

1.30 ,' I , , -r---'r--m-r---T--_X/C
0.00 0.50 1.00

Result of 5th iteration

-0.'/0.

0.30

Cp

!.30 -_----r-- , , , -r , ,' , •X/C 1.30 , , , , , , , , ,
0.00 0.50 1.00 ,.00 0.50

Result of lOth iteration Result of 12th iteration

i x/c
1.00

Fig. 2 Convergence history of the pressure distribution (example i)

Cp

-I.20 -

-0.70

-0.20

0.30

0.80

A....... -'_ Initial

__ Tar9et

a I

1.30-----q-- -T ' 1 1 I ;
0.00 0.20 0.'40 0.60 0.80

T r X/C

1.00

Fi9. I Comparison of initial, target pressure distribution (example I)



551
Third International Conference on Inverse Design Concepts and Op_im_..auon in Engineering Sciences
(ICIDES-IIII. Editor: G.S. Dulikr'avich. Washineton D,C.. October .._'_x-..._1991,

F

1.rio

Turbulent-flow

F rooftop distribution

Upper surface

1.20

_ Zero skinfriction

Stratford distribution

0.40

Loder surface I

0.80 i
• I

.._ Input distribution

Acceptable (output) !

distributtion
!

J

, l

20 40 60 80 I00 120

Distance alons surface, =easured fro=

leading-edge stagnation point

Fi9. 3 The input and acceptable velocity

distribution 9iven by Strand

L J



552

Third international Conference on Inverse Design Concept._ and Opumization in Engineenng Sciences
(ICIDES-IID. Editor: G.S. Dulikr_vich. Washington D.C.. October 23-25. 199].

F

1.50

1.00

0.50

0.00

Fi9.

x/c
0.25 0.50 0.75 1.00

The input and designed velocity

distribution (example 2)

L {



553
Third International Conference on Inverse Design Concepts and Optim_za6on in Engineering Sciences
(IClDES-Ilfl. Editor: G.S. Dulikravich. Washinlzton D.C.. October 23-25. 1991. ._

F N92-189" 0
Study of a New Airfoil Used in Reversible Axial Fans
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Abstract

The characteristics of reversal ventilation of axial flow fan is analysed in the paper. In ac-

cording to the theory orflow around the airloil, a new airfoil -- "s" shaped airfoil with doub-

le circular arc is presented and experimented in the wind tunnel, the experimental results have

shown that the characteristics or new airfoil in reversal ventilation is the sarnc as that in nor-

mal ventilation and is better than that of existing airfoils of reversible axial fans.
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[
1 before blade cascade

2 after blade cascade

u tangential direction

z axial direction

m for mean radius

o for >- = 0

t tip

h hub

Introduction

The reversible ventilation of a fan is a problm which often arises in many places, for ex-

ample, in road and railway tunnels where it is required to drive the air in one or the other di-

rection depending upon the condition that exists at the time. Though an axial fan whose im-

peller blades are formed with conventional airfoil can drive the air in opposite direction by

simply reversing the rotor, it is found that the characteristics of reversal ventilation is much

lower than that of the normal ventilation, the efficiency of fan decreasing sharply and the []ow

rate being about 40-50% ognormal ventilation.

The characteristics of reversal ventilation of axial fan with single indepedent impeller is

analysed in the paper. In accordance with the theory of l'low around an airfoil, a new airfoil--

"s" shaped airfoil with double circular arc is presented. If the impeller blades are formed with

such airfoil, the axial fan can operate in each direction to provide a substantially equal but

opposite flow with a higher efficiency than can be obtained by existing fan with conventional

blades. The reversal ventilation can be achieved by simply reversing the rotor or fan. The "s"

shaped airfoil presented in the paper provides a basis for constructing a new type reversible

axial fan with simple construction, easy control and better characteristics.

The charactcristics of fan impcllcr durinl_ normal and reversal rotation

According to the 2-D cascade theory, the velocity triangle of a blade cascade of the axial

fan with single indepedent impeller is shown in Fig.1.

From the Eular equation
P = pu(c2, - el,)= Ou(w,, - w2,) (1)

then the coefficient of theoretical pressure is

U ' 2=P /Ou,=u(w -w2,)/u (21

where u t is peripheral velocity of impeller.

Writting ?. = __r = u (3)
/'f t/f

L J
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F
C

_t

(4)

thus the eq.(2) becomes

From fig.1

P_-= FO(tg0_ - tg02) (5)

W lu _-- Clu "_

tgO
c c ¢)

t t

According to the cascade theory [4]

tgO 2= AtgO 1 + B

Where

tg_ _ f6)

(7)

1 -- 71(de y / d_)cos]/
A = (8)

.r

1 + 71(de, / dct)cos]/

!(de r / da)sin]/2
B = (9)

1 + 4(dcy / dcOcos]/

]/--the entry angle of relative velocity during PI=0, i.e. angle ol'zcro lift line (Figl)

From eq. (5), (6), (7) we get

p, -- (! - A)F 2 -- _O[B + (I -- A)tg61] (10)

The slope of characteristic line_ oof Pr is

dP
K dO F[B + (1 - A)tg_] (1 I)

When P-= 0, the coefficient of flow rate • would have the maximum value

• = (1 -- A)F (12)
0 B+(1 --A)tg6 I

and the flow rate becomes maximum too

(,3)
If representing with mean radius r m

thus

r

F "m

m it t

• (12a)
om

(13a)

It is noted, that the preceding equations are all suitable for both normal and reversal ro-

tating of impeller.

For axial fan with single indepedent impeller no matter what the rotating direction may

be, the air flow into the blade cascade always with axial direction, i.c the angle 6_ = 0. Making

= (I - A)_ / [_ + (I - A)tg6,l

o_

L J
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r
superscript " ' " for condition of reversal ventilation, thus from the eq. (10), (11), (12a), (13a)

the following equations are getten:

I) the theoretical pressure coefficient

--P= (1 - A)-F 2 -- FOB (14)

P' -- (1 - A')?-' - ?¢'B' (15)

2) the ratioofK of reversal ventilation to that of normal ventitation

__K' B'- (16)K B

3) the ratio of maximum theoretical reversal flow rate to maximum theoretical normal

flow rate during P_-,= 0
0' ¢'

j = o,, = o,, _(1-A')B (17)
o 0 O (I -- A)B'

om o_,l

Assure that dcy/d a maintains constant during normal and reversal ventilation, and in-

sert eq.(8), (9) into eq. (16), (17)
-[

sin/Y[l + _ (dc y / da)eosfl]
K = (18)

,[

sinfl[1 + _ (dc r / do)cos//']

j ctgfl' (19)
o ctgfl

From fig 2

/'/=/'/, - % 'fl'= fl, + a'o

then inserting into eq.(18).(19)

thus

_ sin(fl, + _'o)[1 + 2(dcy / d,,)cos(fl, - %)]
K = >1 1 (18a)

T

sin(fl, - ,,o)[1 + _ (de /d-)eos(fl, + -'o)]

ctg(fl,-! _'o)
J - _< I (19a)

o ctg([J, -- _o )

From preceding two equations, it is found that J0 less than 1 and ,K larger than 1 except

/_'=/1 (i.e. "0=-"'0)- It follows that if the impeller of fan rotates in opposite direction, the

maximum flow rate of fan would decrease and the slope of characterstic line of .P would be-

come steep.

Because the a0, a'oare relative with geometrical parameters or blade cascade, such as

airfoil deflection .f, blade solidity ¢, installation angle of blade O,and blade thickness c. there-

fore Jo and Kmust be the function orsuch parameters

J, --" .f(.f,t',O, ,C)

= .f(.74,O,,c) _2o)

From eq. (18a), (19a) irfl =/_'(i.e ao+-'o = 0)

q

L
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F
then

J0= 1,K= I (21)

It means that the characteristics of fan during contrary rotation is the same as that dur-

ing normal rotation, therefore the best effect of reversal ventilation is obtained.

It is clean that only following two condition can satisfy the cq.(21)

(1) =o = _t'o = 0

It can be obtained that if thc airfoil deflection /'= 0, such as the flat plate airfoil, ellipse

airfoil, the characteristics of such airfoils arc lower and not satis[octory for ue.

(2) _0 = -_'0(_0q=0, _'04:0,/'_ 0)

It can be obtained whcn the zero lift line of cascade in revcrsal ventilation is parallel to

that in normal ventilation, i.e. the airfoil must posses the reversal symmetcrical npofilc.

"S" SHAPED AIRFOIl. WITH DOUBLE CIRCULAR ARC

On the basis of analysis in preceding section we present a new airfoil-- "s" shaped airpoil

with double circular are as shown in lig.3. It is a reversal symmcterical airfoil satisfying the

condition ct0= -_,'0.Thc centre line of the airfoil posscs the shape of "s", which is connected by

two circular-arc lines ABC and CDE tangential to each other. At the middle points of two

arcs/B.D) the deflection of centre line is maximum.
|Y,,ox I =v

Where F is the half of the maximum thickness of airfoil.

The equations of centre line of airfoil may be written as

arc ABC x- _ + (y + a) 2 xe(0,_)

arc CDE x - + (y - a) 2 xe(-_ ,b) (22)

2 F
wherea=(b /32F)-- (23)

2

l/b 2 b 2 F) (24)R(radius ofcircular arc)=_/ --_ + ( 16 2

The formation of airfoil profile

Along the cenlre line BCD a number ofeircles with radius r= F are drawn whose centre

points arc at the arc BCD,then a number of another circles arc drawn along the ares AB and

D'_E,whose centre are at these arcs and whose radiuses are identifed with the perpendiculars

from center points to abscissa line x. Drawing cnvolope line around such circles, the profile of

the new airfoil is formed.

If the chord of the airfoil b is constant, taking different value of F , a number of"s"

shaped airfoil with different deilection .7 would be obtained.

l J



558

Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-III'). Editor: G.S. Dulik.ravich. Washington D.C,. October 23-25. 1991.

F

L

EXPERIMENTAl. RESULT

Four "s" shaped airfoils with diffcrcnt I" are experimented in wind tunnel in

aerodynamic laboratory of Jiaotong University in october 1987. Their symbols arc CS-3(/

= 3%), C-3.5(.[-3.5%) CS-4( ['= 4:% ) and CS-7(f-7%).

The experimental results of these airfoil_arc shown in Fig 4. From fig 4a) It is seen that

with the increaring of attack anglc_ thcliftcoefficientscy increase and reach thcmaximum

value then decrease gradually. In the range _=0 ° -- 13 ° , the cy of airfoil CS-4 is the high-

est among others (c_,, = 0.87) and the cy of airfoil CS-7 is lower than that of others. From

Fig4b) it is seen that the drag cocfficent c, ofallfourairfoilsareincreasedfrom_=0 ° and

thee, of airfoiI CS-7 is much higher than that ofothers, ln the range of attack angle_from

0 ° to 10 ° the c,of airfoil CS-4 is lower than that of others. It is lollowcd that the

aerodynamic characteristic of airfoil CS-4 is better than that of others. Furthermore when

the deflection of airfoil is too big (["_7%), the drag coeUicient c, of airfoil would increase

sharply. The aerodynamic characteristic of airfoil CS-4 is compared with the conventional

airfoil (NACA-64, NACA-66). From Fig 5 a), 6 a) it is shown, though the cy of airfoil

CS-4 is lower than that of NACA airfoil in normal ventilation, it is much higher than that in

reversal ventilation, expecialy at bigger attack angle. From Fig 5 b), 6 b) it is seen, in the

range_=0_10 ° the drag coefficient c= of airfoil CS-4 is lower than thatofNACA airfoil

in normal ventilation, whilea >10° it is higher than that of NACA airfoil, but in reversal

ventilation condition the c,, of airfoil CS-4 is much lower than that of NACA airfoil in all

range of attack angles in experiment.

In order to analyse the flow around the "s" shaped airfoil , the pressure discribution

along the surface of airfoil CS-3 at _, =4 ° is measured as shown in Fig 7. There arc two are-

as bounded by pressure coefficient cr line of airfoil. The area on the preceding half of airfoil

(x / b = 0--0.5) is positive, which indecatcs that the lift force on the airfoil is upward; The area

on the rear half of airfoil (x / b = 0.5-- 1.0) is negative, which indecates the lift force on the

airfoil is downward. Since the preceding area is bigger than the fear area, so the summary lift

force on the airfoil is upward. Varying the attack angle a, the two areas and the summary lift

lbrce would be changed.

In the Fig 7. c =(P_-P0 )/1 2p -}pc=, where Pt is the pressure at the surface of airtoil.

P, is the ambient pressure, c,o is the flow velocity in the wind tunnel.

Conclusion

I) If the impeller ofaxial fan with conventional airfoil rotates in reversal direction, the

maximum theoretical flow rate would decrease, the characteristic line of Pf become steep, the

J
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F
characteristics of fan would be worse.

2) The characteristic of impeller in reversal ventilation is identical with that in normal

ventilation, when the deflection of airfoil 1"= 0 or ._4=0 but the profile of airfoil is reversal

symmeterica].

3) The "s" shaped airfoil presented in the paper is a reversal symmeterical airfoil. When

the impeller whose blade is formed with such airfoil rotates in opposite direction, its charac-

teristic would be the same as that in normal ventilation.

4) The synthetical characteristic of axial fan whose impeller blade is formed with "s"

shaped airfoil would bc better than that formed with conventional airfoil, especially in rever-

sal ventilation condition, therefore the new airfoil presented in the paper is more available for

reversible axial fan.
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ABSTRACT i /,_! _ _ ' _"--_
!

A two-dimensional problem of diffraction of a plane . l_

electromagnetic wave on a smooth 2%-periodic surface is

considered. Numerical algorithm, solving this problem is

developed.

An inverse problem of determination of the shape of
2%-periodic surface using the performance data of reverse

scattering is considered.

Inverse problem was solved by means of minimization of

the residual functional with the help of gradient descent
method. The initial data were calculated with the help of

the numerical method. On each step of iterative method of

minimization ,the residual functional was calculated

approximately with the help of small slope method. The

examples of the shape determination are considered.

INTRODUCTION

The new approximate methods, solving the problem of

diffraction on a smooth two-dimensional infinite wave-like

surface (for example [i], [2]) give us hope of solving the

problem of the wavy shape determination using the

performance data of reverse electromagnetic scattering.

The aim of this paper is to show the advance of the

approximate method of small slope in connection with the

inverse diffraction problem. For this purpose we consider

only periodic surfaces because for such surfaces there may

be developed numerical methods, solving the direct problem

with the high accuracy, so the accuracy of the approximate

method, solving the inverse problem, may be investigated.

In the first part of this paper the two-dimensional

direct problem of diffraction of a plane electromagnetic

wave on a smooth Z_-periodic surface is considered, the

numerical method, solving the direct problem of diffraction

is developed:

With the help of Green's function of Flocke canal the direct

problem is reduced to the one-dimensional integral

equation. The kernel of the integral equation contains

logarithmic singularity, which is expressed in the explicit

form. The well convergent series for calculating the kernel

of the integral equation are developed. The integral

equation is solved using the method of moments

L

In the second part of this paper the small slope method

is applied for the problem of diffraction on a periodic
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F
surface, the algorithm, solving the inverse problem, Is

developed, the examples of shape determination are

presented:

The inverse problem of determination of the shape of

2_-period]c surface using the performance data of reverse

scattering are considered. Inverse problem was solved by

means of minimization of the residual functional with the

help of gradient descent method. The initial data were

calculated by means of multiple solving of the integral

equation On each step of iterat]ve method of minimlzatlon

,the residual functional was calculated approximately with

the he]p of small slope method. The formulas for approximate

calculations of residual functional are presented.

I. Mathematical formulation of the direct problem.

The

equation

unknown function u satisfies the Helmholtz

A U + _2-u = 0 (i)

in the region _ = { (x,y) I -m < x < f(y), 0 ! y ! 2_ }.

Here _ is wave number, _=! , f(y) is smooth 2%-periodic
c

function.

The boundary condition for the function u is :

u(f(y),y) = 0 (2)

L

In the region
x < x 0 = inf f(y) the

[0,2_]

radiation condition

ii%(x- cosa+y'sin_) +m -lynx ik_y
u = e + _ T e e (3)

n
n=-oo

is imposed on u Here a is the angle between the wave

vector of incident wave and x - axis, k = k'sin_ + n,
. n

!

Yn=_2 _ k2n ' Re yn- > 0 Im yn _ 0. Tn are unknown

amplitudes of scattered plane waves.

The function u is also assumed to satisfy the



565

Third International Confercncz on [nvers= I:_si[m Concepts and Opdm_a_on in Engineznnz Scicnccs
!= T__CID_S-Ih.. Ed_'o;: O.S. Du]Jku-_.vich. Washin_-,_o,- D.C.. Oc,o_r _ _ lOO1

Flocke conditions:

it
u(x, 2%) = u(x, O)-e (4)

au au
it

a---g (x. 2%) - ay (x, 0).e
_5

where t = 2_i%'sino.

2. Mathematical formulation of the inverse problem.

Let us consider the set of direct problems (i) - 5)

for resonance values of parameters _ and

( (M e (-_-,O)u (0, z

/¢ = = /_(_) =

Problem:

1

21sin_ I ). (6

For the given function

determined in (3) )

T = T (a) ( T are
-stgnC_ -sLgn(_ n

where _ e O)u(O,-) determine
2 ' 2

2_-periodic function f(y).

ANALYSIS

i. Numerical algorithm, solving the direct problem.

With the help of Green's function of Flocke canal

J ]G(M,P) _ i%2 Hc _" 6x 2 + ( 6y+2%m )z "e-imt (7)

m=-m

( here 6x = XM-X P, 6y = yM-yp, HCi)(X)c - is the Hankel

function of the first kind of order 0 ) the problem is

reduced to the one-dimensional integral equation for the

_U (
_-6 f(y) y) :
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2TI

0u

=
O

-t

i_(f yM)'cos_+y M'sin_)
= e (8)

Here I(y) = J 1 + [f(y)]2

The integral equation (8) was solved with the help of

method-of-moments :

Let us divide the segment [0,2%] into N equal length

segments, using points y ( Yo=0, YN=2_ ) . Consider

functions :

_LCy) = {

y ,E [ y ,y ]
t-I t

Y _ [ Yt-i'Yt ]

Let us seek an approximate solution of equation (8) in

the following form :
N

_I2_(y) : _ DN'@.(y)_t (9)

where coefficients D N are to be determine.
t

Function _N(N) assume to satisfy equation (8) in points

t
y = -- ( y. + y. ) . It gives fol lowing equations for DN

i R t-i t t

2

coefficients determine :

Y .

J
N

DN G f(y 1),y ,
t:i J _--- t---

y. 2 2
j-J

L J
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F [ oloo}= exp i_(f (y t ) "c°s_ + y i
t---

2 1.-_

(i0)

The expression (ii) gives the well convergent series, which

gives us the method for calculating the kernel of the

integral equation (8).

ix 6y t6× Io lYo
i-e -e

G(M,P) = +

2Y o

o0 ibt_6y t

+ _, [e [ ch(_16x 1) "_1(n,6x,6Y )

n=l

t ] ]- ish(_16xl)gz(n'6x'6Y) + R(n.6x,&y)
(ii)

Here M = (xM,y M) P = (xp,yp) b=2%,

(n,6x,6y)
i n

= cos(n6Y).e-nl6xl (12)

(n,6x,6y)
2 n

sin(n6Y).e-nl6x I

iXn6y ixnl6Xl ik_n6Y i_'_nl6Xl

i [ e -e + e -eR(n,6x,6y) = _" Yn Z-n

(13)

i_y -nl6x I
e -e

n
cos(n6y)

tl6xl)'sin(n6y) ]i'sh([
(14)

R satisfy the expression (15)
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F

I R(n,6x.6y) I < C

n

15)

Rows (12), (13) can be summed:

oo

I " 2 - ['in shZ( --_ ) +

n=l

2 6y ]+ sin ( --_ ) 16)

oo

sin(6y)

e - cos (6yn=l

17)

The kernel of the integral equat on contains

logarithmic singularity, which is expressed in the explicit
form in (16).

2. Approximate method, solving direct problem

The well known small perturbation method gives

following formulas for amplitudes T
n

T S'P" = A-6 + B f. + _ C "f f (18)
n on n n mn m n-m

m

2%

i -inyf { i n = 0Here fn - 2% I e (y) dy, 6on =

0 0 n _ 0

L

A = -i, B n = - 2iy o, Cmn = 2;,oZm,

The small slope method solving the problem of diffraction

on a smooth two-dimensional infinite wave-like surface was

presented in [i]. In the case of periodic surface amplitudes

T were sought in the following form:
n

2%
1 i(Zo+yn)f(y)

T S.S. __£ e--inY
= 2'E.J en

0

J
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F

• (a n + _ bmn'fm, eimY)dy (19)
m

where

values

a n , bmn were constants to be determined.

T S's" satisfy the following conditions:
n

a) IT S'S" - TS'P" I < const.E 3 c , 0
n n

where _ = max If(y) l

0_y_2_

b) Shift surface along x - axis condition:

Let the

(20)

i(Zo+Yr,)Xo T S.S. If(y)] (21)TS'S'[f(Y)+x ] = e
n o n

c) shift surface along y - axis condition:

inYo T S S
TS'S" [f(y+yo)] = e - " " [f(y)]n n

Condition (20) will be valid for (18) if

(22)

a = A (23)
o

• + b = B (24]
i(Yo + Yn) an nn n

Qmn - Qn-m,n (25)

where Qmn = Cmn -

Yo + Yn

( 2i.bmn - (Z 0 + Zn).an ), and the

conditions (12) and (13) will in turn be satisfied if

b _ 0 (26)
on

In the article [i] the following expressions were proposed,

L J
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[
which satisfy (23) - 26):

an - 2 (Con + Cnn

(Yn+Yo)

- 2i(Vn + Vo)B n )

-i

b = (C +C +C +C )- B

mn 2 (_-n+_,o) n-m, n mn nn on n

3. Algorithm, solving the inverse problem.

Let

d = (d , • • " d M " " • d )i ' ' ' 2M+t

Consider the set of surfaces,whach are determined with

the help of functions:
m

f(y) = _ dn'sin ny + dM÷i +

Let us suppose that we know values of the inverse scattering

• d °function for surface corresponding to vector •

m

d "cos ny_+M+ I

T °_ = T(Ct ) T °z = T((lz)

T ° = T((I N)• N

for angles ai,(I z, "'" , {lN.

The numerical algorithm for vector d ° reconstruction

on values T °, --- T ° was constructed. This algorithm is
t N

based on minimization of the residual functional with the

help of gradient descent method. Direct problem on each

iteration step is solved with the help of small slope

approximate method. On each step of iterative method of
minimization ,the residual functional was calculated

approximately with the help of small slope method.

Residual functional is determined by following

expression:

[
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[
e ((I,d) = _ [ T °m - R(O_m ,d) [ 2 (27)

Here _ = ( _ ..- _ )
i N

R(_,d) is the inverse scattering

corresponding to small slope method:

functional.

R((X,d) = _ _-=- -6 + if -(
om m 2

m

2n

i (m+sign(l)yIe
0

ilctg_lf(Y)

•e dy

2_

f i _ -imy= 2--_" f (y) "e dy

O

Coefficients T ° were calculated with the help of numerical

method (7) - (17_.

RESULTS

Consider the example of solving the direct problem with

the help of IBM PC AT 386-387 computer. The values of

parameters are : _ = 1.4 . _ = 30 ° f(y) = 0.3"sin y ;

in numerical algorithm N = 50

Numerical

algorithm

Small slope

method

energy error 0.3-10 -4 0.16"10 -2

CPU time 3 min 54 sec 1 sec

T -0.072 -0.073
-2

T 0.349 - 0.010i 0.347 - 0.005i
-I

T -0.926 + 0.052i -0.926 + 0.049i
O

[ J
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r
Consider examples of Furie coefficients reconstruction

of surface determine function:

First simulation was carried out for N=I0 M=I ,d° =

( 0, -0.3, 0.51 ) After 7 iterations vector d : ( 0.000,

-0.300 , 0.503 ) was obtained as the minimum of the

functional (27).

Second simulation was carried out for N=6 M=2

d° = ( 0, 0, -0.i, 0.2 0.2 ) After 44 iterations vector

d : ( 0.000, 0.000, -0.092, 0.195, 0.190 ) was obtained

as the minimum of the functional (27).

i. A.G.VORONOVICH,

theory of scattering
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Transistor design for extremely high frequency applications requires consideration of the
interaction between the device and the circuit to which it is connected. Traditional

analytical transistor models are too approximate at some of these frequencies and may not

account for variations of dopants and semiconductor materials (especially some of the
newer materials) within the device. Physically based models of device performance are

required. These are based on coupled systems of partial differential equations and typically

require 20 minutes of Cray computer time for a single AC operating point. A technique is

presented to extract parameters from a few partial differential equation solutions for the

device to create a nonlinear equivalent circuit model which runs in approximately 1 second

of personal computer time. This nonlinear equivalent circuit model accurately replicates

the contact current properties of the device as computed by the partial differential solver on
which it is based. Using the nonlinear equivalent circuit model of the device, optimization

of system design can be performed based on device/circuit interactions.

INTRODUCTION

The evaluation of the potential performance of semiconductor devices for analog applica-

tions is usually performed in two ways. First, the device may be characterized through small

signal admittance or scattering parameters which may be obtained by experiment for exist-
ing devices or by numerical simulation for a new device structure prior to fabrication. From

these results, the devices can be characterized in terms of small signal parameters such as

the unity gain cutoff frequency, ft, and fmax- While these parameters provide a valid est-
imation of the limits of the device operation under linear, small signal conditions, such

estimate will typically be in error under large signal conditions. Under large signal, high

power conditions, nonlinear effects within the device become important. At low frequency,

the nonlinear effects manifest themselves primarily as bias dependent parameters such as

bias dependent transconductance and capacitance. At high frequency these parameters will

also exhibit hysteresis effects due to the nonequilibrium nature of transport within the
device.

L

As a result of these nonlinearities it is imperative that the performance of the device be

evaluated while embedded in its operational circuit. It is the device-circuit interaction and

resulting performance that is of interest and not simply the device characterization. Since it

is obviously too costly and time consuming to design, fabricate and test a new device and

then design, test, and redesign a circuit around the device in hope of achieving the desired

performance, an alternative must be found. This alternative is numerical modeling. Funda-

1
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mentally, device-circuit interaction can be modeled using, equations to represent the device

and coupling the external circuit to it through boundary conditions. While this has been
and will continue to be done, it is presently too costly, even on the supercomputers available

today, for all but the simplest of circuits. As a result, devices are approximated by nonlinear

equivalent circuit elements in the large circuit simulation procedures. The adequacy of

these equivalent circuit models has a direct impact on the predicted results.

In an effort to improve these device models Madjar and Rosenbaum [1] and Khatibzadeh

and Trew [2] have developed procedures in which the FET is modeled by a system of non-

linear ordinary differential equations relating the gate and drain currents to the time

dependent gate and drain voltages. The coefficients of these ODE's are determined
analytically, using highly approximate models of the device. The present work is a signifi-

cant generalization of the approach of [1] and [2]. Here the coefficients of the ODE's

representing the device are determined numerically, through a physically based model; in

this case the drift and diffusion equations and the moments of the Boltzmann transport

equation. The resulting ODE representation is then executed, and the validity of the results

are verified at select operating points. With such an agreement established, the equivalent
circuit model can then be used with a higher degree of confidence in a complex circuit

simulation and device/circuit optimization.

This study is based on three concepts. First the entire program is based on large signal

concepts. Most large signal predictions of device performance are based upon small signal
concepts; the assumption being that a 'good' small signal device is also a 'good' large signal

device. Thus quantities such as the cutoff frequency, fmax, etc., have been used to assess

device performance. However, this is not appropriate since the power requirements for

MIMIC applications preclude small signal operation. MIMIC devices will be operated
under large signal conditions, and large signal assessment of device performance is

required.

Second, the computational device physics model is based on the drift and diffusion

equations (DDE) for the 20-40 GHz range and on the nonequilibrium balance equations
obtained from the first three moments of the Boltzmann transport equations (MBTE) for

the 40-100 + GHz range. The MBTE equations include the effects of carrier acceleration

and velocity overshoot that are increasingly important as the frequency of interest increases
and feature size decreases. Both analyses include the effects of processing parameters on

device performance.

Third CAD compatibility was achieved by linking the DDE and MBTE analyses to

nonlinear equivalent circuit analysis developed under a study sponsored by the National

Science Foundation [3]. The nonlinear equivalent circuit model based on DDE or MBTE

computed characteristics permitted very rapid (less than 1 second of Cray computer time)
calculations of large signal AC performance of a device that accurately reproduced the

more costly full calculations.

Coupling the nonlinear equivalent circuit model with the DDE and MBTE permits, for the
first time a capability of performing fast and accurate calculations that describe
device/circuit interactions. The nonlinear equivalent circuit model is compatible with

commercially available CAD software and would run on a workstation. The nonlinear

L J



575

Third Int_rnauonal Conference on Inverse Design Concepts and Optimtz.a_on in Engineering Sciences
(ICIDES-III). Editor: G.S. Dulikravich. Washington D.C.. October 23-25. 1.091.

F
equivalent circuit model has been coupled to a numerical optimization program and used to
determine realistic goals for device/circuit performance.

Physical Modeling

The key element of the simulation is the system of partial differential equations used to
describe the transient transport of electrons and holes in the devices. Drift and diffusion

equations (DDE) are commonly used to describe transport in unipolar and bipolar devices.

While these equations are valid at the low end of the frequency scale, they are incorrectly

applied at higher frequency scales, typically those in the range of 40 + GHz or when
structural feature sizes are reduced. For GaAs based devices this is in the sub-2500 A

region. When DDE procedures are inadequate the procedures of choice involve either the
moments of the Boltzmann transport equation (MBTE), or Monte Carlo (MC) methods.

Both MBTE and MC procedures are computationally more intensive that DDE

simulations. Unfortunately, Monte Carlo algorithms require the most intensive

computational resources, and are not presently practical for a CAD environment.

A brief description is now presented of the DDE and MBTE analyses and how SRA's

nonlinear equivalent circuit analysis is based on the results of the MBTE calculations.

Semiconductor Drift and Diffusion Equations

The governing drift and diffusion equations are the continuity equations for electrons and

holes and Poisson's equation:

- v • -N#n v (#+_bn) + DnVN
0t

+ G - R (i)

op [ opvp - V • P_p V(_b+_bp) +
at

+ G - R (2)

V, _V_b = e (N-ND-P+NA) (3)

I

where N and P are the electron and hole concentrations, respectively, and e is the electron

charge. The quantity within the square brackets represents the electron and hole currents

densities, -Jn/e and Jp/e, respectively, G represents generation, R recombination, ¢ is the
potential, _ the permittivity, and N D and N A are the concentrations of donors and acceptor

ions, respectively. The terms _bn and _bp are introduced to account for variations in the
conduction and valence band energy levels. Through '_n and _p such effects as band gap
narrowing and heterojunctions may be accounted for.

Within the context of equations (1) through (3) materials such as gallium arsenide are

represented by field dependent mobilities with a region of negative differential conductivity

(NDC). While NDC is included in the subject analysis we point out that it is a feature

never included in the analytical representations of nonlinear devices. J
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F
Moments of the Boltzmann Transport Equations

It is now commonly accepted that the major inadequacy of the drift and diffusion equations

is the use of equilibrium field dependent velocity relationships. Its usage is a statement that

acceleration is to be ignored. The MBTE overcomes this inadequacy.

The nonequilibrium MBTE are obtained by taking the moments of the Boltzmann

transport equation with respect to carrier density, momentum and energy. This yields a set
of governing equations which are similar in form to the equations utilized for multi-phase

flow in fluid dynamics. The governing equations reflect the conservation, or balance laws
of carrier density, carrier momentum and carrier energy and are written down for two

species of electrons namely, the central (small effective mass) and satellite (large effective

mass) valley carriers and one type of hole. Incorporation of holes is both for breakdown

consideration as well as for the possibility of buried 'p' layers in the design of FETS. The

balance equations follow.

Carrier Balance (or equations of continuity):

anl/at = -v,(nlV1)- nl1, 1 + n2P 2- R

a n2/a t = -v. (n2V2) + nlF 1 "n21,2

a n3/a t = -v • (n3V3) - R

(4)

(5)

(6)

where n 1 and n 2 are the central valley and satellite valley carrier number densities

respectively while V 1 and V 2 are the corresponding velocities. 1,1 and I"2 are the
corresponding scattering rates for particle conservation. F 1 represents scattering of carriers

from the F valley to the L valley in GaAs. r' 2 is the return rate. R represents the net
recombination of electrons and holes, assumed to occur only through the i" valley electrons.

n 3 and V3 are the number density and velocity of holes.

Momentum Balance (Newton's Law) for the Central Valley:

a (nlP1)/a t + v • (nlVlP1) + nlP1 F3 =-nleFn "vp 1"v" o 1 + nl[VI'V1/2 + T1/ml]vml

(7)

where there is a force contribution due to spatial variations in the effective mass. In the

above the momentum, P1, and the field, F n, are defined by

P1 -mlV1 (8)

F n = -(re + Vx/e) (9)

m 1 is the mass of the central valley carrier, e is the electronic charge, ,b is the electric
potential and x is the electron affinity. F is the field due to potential differences and
conduction band discontinuity arising from material variations. The partial pressure, ta 1, is

L
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related to the central valley carrier temperature, T1, and number density by the perfect gas
relationship, which results from the assumption of Boltzmann statistics,

ta = nlkT 1 (10)

where k is Boltzmann's constant. I"3 is the scattering rate for the central valley carrier

momentum. Contributions to I"3 include impurity, acoustic phonon, polar phonon,
nonpolar intervalley scattering. The effects of electron-hole scattering is accounted for

through an enhancement of the impurity scattering. The term V:o 1 represents the stress
forces. In this study, the stress tensor, o 1, is approximated by the relationship

o 1 = rl lVV1 (11)

where 771 is the viscosity associated with the central valley carriers. Similar momentum
conservation equations can be written for the satellite valley and for holes.

Energy Balance for the Central Valley Carriers:

There are various forms in which the central and satellite valley carrier energy equations

can be described. We choose to cast the energy equations in terms of the central and

satellite valley temperatures, T 1 and T 2.

a (nlT1)/d t + v • (nlVlT1) + (nlT1F5-n2T21` 6) =

-2/3[niT1 v. Y 1 + o l:VVl/k-v, (_vT1)/k ]

+ 3V1" Vlml [n1(21` 3-1` 1) + n21` 2]-nlVlT1/m 1" Vml

(12)

In equation (12) 1"5 denotes energy relaxation within the central valley plus energy

exchange with the satellite valley; r 6 denotes energy exchange between the satellite and

central valley. All energy exchange between electrons and holes is ignored. A similar
energy conservation equations can be written for the satellite valley electrons and for holes.

In the energy balance equation for electrons and holes equations the contribution of the
recombination have not been included.

The potential is related to the total number density through Poisson's equation

v. e v,b = el(n I + n2-no) -(n3-PO) ] (13)

where n o is the donor density, Po is the acceptor density and c is the permitivity.

In two dimensions, the complete problem description requires 13 equations consisting of 3

continuity equations, 6 momentum equations, 3 energy equations and a Poisson's equation.

The boundary conditions for potential are the same as used for the drift and diffusion

equations. At ohmic contacts, the boundary condition is given by the sum of the applied
bias and an appropriate built-in potential. The temperature of all carriers are assumed to
be at 300K at the ohmic contacts. The carrier densities at the contacts are fixed at the value

of local doping. For velocities, the normal gradient is taken to be zero.

L J
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F
Consideration of the External Circuit

Typically, in device simulations the voltage at the contacts are either fixed at a constant

value or a time dependence is specified. When an external circuit is introduced, the

voltage on the contact is determined by solving the device equations along with the circuit

equation. The external circuit thus represents a boundary condition as far as the device
simulation is concerned.

Transition of the Device/Circuit Results to Systems and Circuit Engineers.

The present study was predicated in two facts: (1) While the ideal way to transition the

technology of device physics and device-circuit interactions is to deliver to the systems

engineer a time dependent code that incorporates all of the partial differential equations
describing the device, and the ordinary differential equations describing the circuit, the long

run times generally associated with solving both the DDE and MBTE algorithms, rendered
this approach impractical for engineers. (2) The approach favored by engineers to allow

practical device-circuit interfacing is to obtain analytical representations of the dc current

voltage characteristics of a given three terminal device, as well as analytical approximations
for the relevant capacitances of the device, and then lump these parameters into a large

signal simulator that solves the following set of coupled ordinary differential equations [3]:

Ig(t) = Ig o [Vg(t),Vd(t-tl) ] + Cgg dVg(t-t2)/dt + Cdg dVd(t)/dt (14)

Id(t ) = Ido[Vg(t-t0),Vd(t)] + Cg d dVg(t)/dt + Cdd dVd(t-t2)/dt (15)

In the above the terms t 0, t 1, t2, represent time delays associate with transit of carriers
between the gate and drain, drain and gate, and source and gate, respectively. The

capacitive contributions are functions of the gate and drain voltage, with the time delays
appropriate to the equation in which they appear. Equations of the type represented by

equations (14) and (15), which are "SPICE"-like equations, are then typically coupled to

harmonic balance programs.

Application of standard numerical optimization techniques with two-dimensional systems

of partial differential equations (DDE or MBTE) is conceptually straightforward.

However, implementation requires large computer resources, making it of limited interest
to device designers at this time. Use of the equivalent circuit analysis, equations (14) and

(15), results in very fast calculations that could be performed rapidly on a personal

computer. The issue then becomes the accuracy of the equivalent circuit model. Other

researchers [1] and [2] determine the coefficients and time delays from analytical

considerations. This is a useful approach for device designs and materials in operating

regimes that are well understood. The intent of the present work is to extend the utility of

the equivalent circuit model to materials, designs and operating conditions that are not well
understood. To achieve this goal the coefficients and time delays for equations (14) and

(15) are derived from solution of two-dimensional systems of partial differential equations.

This procedure obviates the need to make approximations that permit analytical

expressions to be written for the coefficients and time delays in (14) and (15). It also

permits extension of the analysis to other device designs and complex doping distributions.

L
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The procedures for obtaining the terms relevant to equations (14) and (15);

Cgg, Cdg, Cg d, Cdd, to, tl, t2

involves five broad steps. These are identified below.

(1) From the DDE or MBTE algorithm the dc characteristics of the device are obtained.

(2)

(3)

Perturbations of the dc characteristics are obtained as a function of gate and drain
voltage. Small changes in the net charge on the drain and gate contacts are

computed as a function of changes in gate voltage on the gate contact; leading to

values for Cg_: and C_d. A similar procedure yields involving changes in drain

voltage lead t_ valueg'of Cg d and Cdd.

Time dependent calculations demonstrate that there are transit time delays

associated with the imposition of a signal on the gate contact and its observation on

the drain contact. Similarly a change in voltage on the drain contact will have its

effect on the gate contact delayed. Time dependent DDE or MBTE calculations are

performed and the time delays associated with this are represented by the terms to

and t 1. Time delay associated with the source-gate loop is represented by t 2.

(4) The above parameters are incorporated onto the ODE solvers of equations (14) and

(15).

A flow chart describing the above is shown below.

7

DDE or MBTE
DC Solutions I DDE or MBTETime Dependent Solution

I I
INonlinear Equivalent

Circuit Model

The advantage of the ODE solver over that which incorporates solutions to the partial
differential equations is engineering time. A system of ODE solvers that can be used to

replicate the output of the two-dimensional physically based models could be effectively

|used by circuit engineers to represent the device in circuit codes. It is worthwhile noting
L
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that alternative formulations for fast calculations can be considered; e.g., quasi

two-dimensional analysis of Snowden and Pantoja [4]. To use such an analysis, the

predictions would be calibrated against an MBTE solution for the operating conditions of
interest.

RESULTS

The above equivalent circuit model was compared to the drift and diffusion calculation of
the FET of figure 1 in AC operation at 20, 40 and 60 GHz with a resistive load on the drain.

Lissajous of these calculations are presented in figures 2 and 3. Comparisons of three

power gain calculations at the same frequencies are shown in table 1. The lissajous, after

the initial transient, and the AC power calculations are well represented by the equivalent
circuit analysis.

Large Signal Circuit Dependent Results at 94 GHz

Large signal circuit dependent operation at 94 GHz was studied by connecting a 0.25

micron gate FET to a resistive load as shown in Figure 4. The drain battery voltage was set

at 3 volts. Since the computed current levels in the device were dependent on the analysis

used, the resistor was sized to have a one volt drop under DC conditions for a gate width of
300 microns. A sinusoidal voltage was applied to the gate at an amplitude of 0.5 volts and a

frequency of 94 GHz. The gate and drain voltages and currents are presented in figure 8 as

a function of time. The computed contact currents become periodic in time (steady AC) in
less than one cycle and show sinusoidal periodic behavior at all contacts. Nonlinear effects

which manifest themselves in gain compression, were not apparent at this gate bias level.

Nonlinear Equivalent Circuit Analysis at 94 GHz

The nonlinear equivalent circuit analysis of the recessed gate FET was implemented based

on the MBTE calculations. Curve fits were obtained for Id (Vg, Vd) and for the capacitive
coefficients in equations 14 and 15. Figure 5 and 6 show the equivalent circuit results in the

same form as the MBTE calculations. The lissajous are seen to have the same shape and

similar harmonic content. It should be noted that while the MBTE calculation required
twenty-five minutes of Cray Supercomputer time the Nonlinear Equivalent Circuit Analysis

required less than one second of time on a personal computer.

Load Pull Calculations at 94 GHz

To demonstrate the ability to perform load pull simulations, such a calculation was

performed by applying a sinusoidal signal at the gate with a magnitude of 0.5 volts. A

sinusoidal voltage was applied to the drain with a magnitude of 0.6 volts and a phase lag of
200* behind the gate signal. This calculation was performed using the DDE, MBTE and

the SRANEC analysis based upon the MBTE parameters. Figure 7 shows the Vg-Vd

lissajous figure for these three calculations. Figure 8 compares the computed output for the
load pull for each analysis. Note again the significant differences between the DDE and the
MBTE calculations.

1 J
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To demonstrate the utility of the equivalent circuit model an optimization program was

mated to the equivalent circuit model. The optimization program drove the gate and drain
voltages sinusoidally with an imposed phase delay:

o

Vg = Vg + 6Vg sin (_t) (16a)

o
V d = V d + _V d sin (wt-_) (16b)

The following optimization problem was posed: For fixed Vg o = -2 volts, VdO = 4 volts
and zxVa = 1 volt what values of z_V, and ¢ will provide a power gain of 8 db at an input

"_ 2
power of 10" watts. AV_ was constrained to be in the range IkAV_<__ 1.5 volts. This
problem was solved at a _'eries of frequencies from 10 GHz to 50 GHz using a

Quasi-Newton optimization procedure with BFGS updating. For frequencies from 10 to 20
GHz the desired power gain of 8 db was achieved. Above 20 GHz the power gain

decreased as a function of frequency as shown in figure 9. Solution of the above problem at
each frequency required 30 to 90 AC device calculations. This would be unreasonably time

consuming and expensive for a drift and diffusion analysis even on modern supercomputers.

Using the equivalent circuit model each optimization requiring 30-90 AC steady state

device calculations took approximately 1 minute of time on an IBM PC.

CONCLUSIONS

Using physically based research algorithms a nonlinear equivalent circuit analysis of a

transistor operating at extremely high frequencies (20-100 + GHz) can be generated. The

nonlinear equivalent circuit model reproduces transistor contact current in less than one

second of computer time that required approximately 20 minutes of Cray supercomputer

time suing the full physically based models. With this accuracy and concurrent run time

advantage, tranditional optimizatiton techniques can be brought to bear on the
device/circuit interaction problem.
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F

vs vG v o

/

/

ACTIVE CHANNELBUFFER LAYER

SUBSTRATE

Figure 1. FET Schematic from Reference 5.

PHYSICAL PARAMETERS FOR THE 0.5 _tm GATE LENGTH GaAs
MESFET USED IN THE SIMULATION

GATE LENGTH

GATE WIDTH

CHANNEL THICKNESS

SOURCE TO GATE SPACING

DRAIN TO GATE SPACING

BUFFER LAYER THICKNESS

GATE METALMZATION

SCHOTTKY BARRIER HEIGHT

TEMPERATURE

DOPING OF ACTIVE LAYER

DOPING AT CONTACTS

SUBSTRATE IMPURITY LEVEL

0.55 i_m

300 t_m

0.15 )am

0.5 I_m

0.6 I_m

0.2 I_m

ALUMINUM

0.80 V

350 K

1.5 x 10 23 m 3

3.7x 10 23 m _3

1.0 x 10 23 m 3

Table 1.
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F ]

DRIFT AND NONLINEAR

DIFFUSION EQUIVALENT

CALCULATION CIRCUIT MODEL

20 GHz 3.92 4.03

40 GHz 1.32 1.25

60 GHz 0.78 0.80

Table 2. Ratio of Output Power to Input Power - Comparison of Drift

and Diffusion Calculation and Nonlinear Equivalent Circuit.

9

A 6
t'_

"ID

z 5
,<
(.9
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2

10 15 20 25 30 35 40 45 50

FREQUENCY (GHz)

Figure 9. AC Power Gain versus Frequency at Fixed Input AC Power.
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F :\'9 2- 139731
Design of Transonic Compressor Cascades Using

Hodograph Method

Chen Zuoyi Guo Jingrong

(Dept. of Thermal Engineering, Tsinghua University)

(Beijing, China)

[L/
1. Introduction

The design of transonic turbine cascade using Hodograph Mathod is presented in Ref. 1,

2, 3, etc. But up to now, there are no published papers about the design of transonic

compressor cascade using Hod_raph Mathod. It is given in this article.

The design of flow mode in the transonic compressor cascade must be as follows: (1)

the flow in nozzle part should be uniform and smooth. (2) the location of sonic

line should be resonable, and (3) aerodynamic character of the flow canal in

subsonic region should be met. The rate through cascade may be determined by velocity dis-

tribution in subsonic region. (i.e. by the numerical solution of Chaplygin equation). The su-

personic sections A_C _ and AD are determined by the analystical solution of Mixed-Type

Hodograph equation. If the shock wave exist that we should consider the flow turn by

the shock wave. (The "shock wave-Mean Stream Line Turn Method" has been used).

2. The compressor canal design using the analytical solution of Mixed-Type Hodograph

equation

In general, the analytical solution of Mixed-Type Hodograph equation (i.e. the

nozzle solution) is used in the design of transonic turbine cascade. Can it be used in the design

of compressor? Our research shows that it is sure.

For example, if we use the generalization Tricomi approximation, the approximate

compressible function is:

/

/
.

K,(a) = b n(¢) / (1 - cba) s (i)

For this approximation, comparing the approximate compressible function Kt(a) to

the true compressible function K(o), the difference is very small in supersonic region but not

in subsonic region. This is suitable for the design of transonic turbine cascade because the ana-

lytical solution only apply in the supersonic region. But for the design of compressor cascade,

the analytical solution must be used in subsonic region. In order to.decrease the difference,

we should used the other boundary condition to determine the coefficients b and c, this is:

(2)_<°(,,)1,,.- .o., = _<(-)1,,,._o.,

L

dK,(a) dK(a)
7d [.-0- _ (3)

(r-0

J
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F
and we obtain the c, b as follows:

Ify= 1.4 c=--0.28236

b= 1.15709

The comparision between K(cr) and Ka(cr) is shown in Fig.2.

3. To determine the leading edge shock wave and coming flow parameters of transonic

compressor cascade

On the basis of the sonicline location which has been given in design and according to the

application of analytical solution in compressor canal, we may obtain the profile CtA t and

DA, along with the velocity distribution in CtA / and DA. (i.e. obtain the geometry of leading

edge and the MaA, Ma^_see Fig.3)). If the computation model in Fig.3 is used, we can consid-

er that the flow turn proceeded from coming flow Mat00 at the leading edge of suction and

pressure surface respectively. If the turn angles are t5 and tV,

thus 6 + 6 f =

here • is geometric angle of leading edge.

Two shock waves are produced when the flow turn suddenly. The shock wave angles are

/_t, //2, /VI and _f 2 respectively. Thus, from the relationship of oblique shock wave, we

obtain:

(4)

[22.][ ]tg([311--_12)=2ctgff l Malsin ill--1 / Ma_(y+cos21311)+ 2 (5)

#11- = ¢ - - [3,) (6)

2

Ma_- Ma_ +--2 Ma21cos [31Y- 1 + (7)
2y 2 2 _-- 1 2 2

y- l Malsin [31--1 _ Malsin [31 +1

-- Ma 2 2[3I,
Ma_ = Ma2' + 2y-- 1 + _cos (8)

2y 2 y- 1 2 2 -/
Malsin2 ff l -- 1 Malsin II i + 1

y-1 2

in previous five equations, the known

parameters are [31, /_2, [3/i, [312, Mat,

by the _ve equations.

l

parameters are Ma:, Ma2 / and _, and unknown

so the solutions are completely dertermined

1
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passing the shock wave

F
If the shock wave is strong, the flow turn

considered. The model of design is shown in Fig.4.

We consider that the shock wave strength is determined by the

the meanstreamline, i.e. the shock wave angles /_ and //_ are

the flow turn angle _ ", thus the follwoing relations may be obtained:

should

I
be

2
M

ajl

2ctg,8( + 2tg(,13( -- _ )

flow turn on

determined by

(9)

Ma2B1 + 2
= y----_ Ma = =-- BI COS _ 1

M = +
",2 22 = = • y- l 2

MaBlsin _1 --1 Ma2 sin _ +1
y-- 1 2 B,

(10)

Now, the flow field can be divided into two parts, the region before the

shock wave and after the shock wave. In the region A'BA, applied the Hodograph

Mixed-Type Equation to determine the profile and velocity distribution of the C'A' and DB.

There are four parameters Mare, MaB2, _ , and/_ in the Eq.9 and Eq.10. If the MaB2

is determined, thus the relation between/_ _ and ,8_ can also be determined, and the design

of Hodograph Method that consider the sudden change proceeded from the shock wave may

be solved with the alternative method. For example, we assume the/_ and therefore the lo-

cation of shock wave can be determined, i.e. the location of point B is determined, and the

MaB2 can also be determined. From the Eq.9 and Eq.10, the Mam and /_" may be ob-

tained, and the _" may also be obtained. After this, we can obtain the turn-meanline EF. On

the basis of the EF we can solve the velocity distribution on the BA, and the Ma 2 can be ob-

tained. So that from the Eq.4-- Eg.8 the new//2" can be determined. Put the new/_ in pre-

vious calculation and till it is satisfied.

In the subsonic region, the numerical solution of Chaplygin Eguation can be used. i.e.

+ -70 = .aM M
a a a

(11)

4. Design example

Using previous theory and mathod, two compressor cascade have been designed. The one

is called J-3-Type cascade, and the other is called Ma-Type cascade which is designed on

the basis of velocity distribution of the compressor cascade which is provided by Ref.4.

The designed parameters of transonic compressor-3 profil are: Math number at outlet is

62, flow angle at outlet is 45 ° , cascade pitch is 50mm, the Math number and flow angleJ
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F
at inlet are 50 ° and 1.22 respectively. The designed cascade profile is shown in Fig 5. The

profile coordinates and its velocity distribution are shown in Table 1.

Comparing the velocity distribution of J-3-Type cascade with the calculating of the

Time Marching method, we find the results are in agreement (see Fig.6).

The profile of Ma-Type cascade comparing with the cascade in Ref.4 is also in agree-

ment (see Fig.7).

5. Conclusion

1. The Hodograph Method may be used to the design of transonic compressor cascade.

2. The flow field may be divided into two parts for using Hodograph method design, to solve

the Hodograph Mixed-Teyp Equation in supersonic region and the Chaplygin Equation in

subsonic region.

3. If the strength of shock wave is large, the flow turn by shock wave, the "Shock

wave-Meanstreamline turn Method _' is suitable for this design.
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Fig. 1 The flow model of

transonic compressor cascade
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F The Research Progress on Hodograph Method

of Aerodynamic Design at Tsinghua University

Chen Zuoyi Guo Jingrong

(Tsinghua University )

I.Introduction -T- _' <i_''...-,., i_" -_

The Hodograph Method is a classical method in fluid dynamics. Because it can transform

the nonlinear equation to the linear. So it is always used to resolve the fluid dynamic equation

in the early time. For' example, the well known Karmen-Jein formula is obtained from

Hodograph equation. Then the Hodograph method is widely applicated in the research of

transonic flow. Due to the Mixed-Type character of transonic flow equation, the Hodograph

method may be the only accurate method to solve the transonic flow equation. In the 1970fs,

the Hodograph method start to be used in the inverse problem of fluid dynamics. (i.e. design

problem, such as the work by Hobsen and karadimas (Ref.l) In the 1980ts., we have done sys-

tematic reserch work on Hodograph method in Tsinghua University, and have taken much

progress as the follows.

1. Research progress on the analytical solution of Hodograph Mixed-Type equation

The various analytical solutions of Hodograph Mixed-Type equation are presented in

Ref.3. If we use these solutions to solve the inverse problem, especially design the cascade pro-

file, there are limits on various boundary condition. We can't always find right solution under

any boundary condition. So that the application scope may be restricted. The differences

among various analytical solution of Hodograph Mixed-Type equations and their applica-

tion conditions have been presented. It shows the differences are obvious (see Fig.l).

The application scope of the four nozzle-solution of Hodograph is shown in Table. 1.

All the nozzle-solutions of Hodograph were straight line corresponding with the mean

stream line before. If we use them in the inverse problem of cascade, the best one is prefered to

be curve mean streamline. The nozzle-solution of Hodograph corresponding with the curve

mean streamline is presented. We get the analytical solution of Mixed-Type Hodograph

equation that is corresponding with the parabolic coordinates, as shown in Fig.2.

The relationship between the parabolic and rectangular coordinates is:

.,,<_

1 (1)x =5(¢

y= er/ (2)

Thus the vorticity of V may be represented by:
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1 ( +n ) _°( +)1 )V x V- _ +n_ oC on

7

(3)

It satisfies:

a¢ - +7 pV (4)

-- 2o¢ ,/ _ + n pV (5)
oll ¢

If the equivalent velocity is introduced:

_2 217 = + n V (6)

2
P_=,J_ +,1 v_ (7)

the similar Mixed-Type Hodograph equation can be obtained:

°2_^ 2 + K(cr) = 0
Off

(8)

2. Design of the transonic turbine and compressor cascade using Hodograph method

we have presented the new method to design the transonic turbine and compressor cas-

cade using Hodograph. This method is that applieated the Chaplygin equation numerical so-

lution to solve the subsonic area and applieated the analytical solution of Mixed-Type

Hodograph equation to solve the supersonic area.

The differential equation for numerical solution of Chaplygin equation is:

-= -t- .--W----F
¢/"" B "k + _ _/''+'', \ l,.. 2-_l.k ¢/''+'

P_k :5.',.) 1+Z:_-2'_0,,_ + ' 0,,.__, /[2pt,k / 2 +2Q
S_ ,_ \ l;,k 21t. k Six i.k

/ l_k] (9)

1

The profile coordinates equations are:

M I ii

f I (.0x--xo= -h *_ ® cosO P+Q
• _ •

p Ma ® dMa
) 2 ]_0 cosOaMa * (10)

J
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.....f /2]Yo _- ,_ . ,.sinOdMa (11)Y
Ma dMa

The profile coordinates equations which are obtained by the analytical solution of

Mixed-Type Hodograph equation are:

...... + K° (o) 0 (12)
M a ,, ,e _,.

ao

Y Yo If: l° sin? (a_baa aOJ_ _ ]...... + Ko(a) 0 (13)

The location of shock wave is the importantance in design. The method of profile design

by the given location of shock wave is also presented. The comparision between the design

shock wave locatgion and the experiment is shown in Fig.3.

3. The basic equation of three dimensional Hodograph method

On the basis of the general theory in three dimensional flow and the correspondence be-

tween the physical surface and Hodograph, the basic equations of three dimensional

Hodograph method have been obtained.

Using the concept of equivalent physical surface and equivalent Hodograph, we obtain

the different equation of streamfunction with Hodograph coordinates and integral equation

for returning from the Hodograph to the physical surface.

The correspondence between SI flow surface and equivalent physical surface is shown in

Fig.4.

The streamfunction equation of Hodograph corresponding to the S 1 flow surface is

A_ +A -- +A s +A 4 +Asa_2 -0 (14)a(.O 2a_)

here & is equivalent velocity. 0 is the equivalent flow angle.

The relationship between the equivalent velocity and true velocity is

L

&e =A +Bi

] 2 n__.Lo

B=_. (to9 +r og-rO_,n ) (15)
_3 o r

J
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1

A = _ (.co + _co_}
_2

Similarly, we can obtain the streamfunction equation of Hodograph corresponding to the $2

flow surface, that is:

2

1-7F + + + +As 0
aco a_ _a_a0 _0

(16)

The correspondence between $2 flow surface and equivalent physical surface is shown in

Fig.5.

The relationship between the equivalent velocity and actual velocity is:

n

AK 6 = co - ---L (co 0 + mr) (17)
n o

n

BK 5 = co -- _-0 (co 0 + car) (18)

The integral equations for returning from the Hodograph to the S1 surface are:

;{' /.0.0
Z- Zo = L _ c°sOL + (_ )

gco

(19)

] "i"°[ Z _ + _o-o.=_._ ---
aco

(20)

The integral equation for returning from the Hodograph to the $2 surface is:

L J
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_ aq,/d _
-1

+ r_K4 a--_mJ (23)

4. The aerodynamic design of Hodograph is revolutionary surface

On the basis of the three dimensional flow Hodograph method, the aerodynamic design

of Hodograph in revolutionary surface is presented.

The Hodograph equation corresponding to the revolutionary surface can be obtained

from Hodograph equation corresponding to the S1 flow surface.

M
o 2 [ag, M_ a_

aMa " 2 + 1- --ff aM"
o

b aO aM" aO " aO

+ +;-o_ +-
. o

-fi aM -_- b aO2 a

aM_ aO +aOaM£, b_ 2 -raM aO -_

]_-_-_=0
P aMa" .JaO 2

(23)

The integral equations for returning from the Hodograph to revolutionary surface are

z° J_ Map L _ a_

+ ]Ma ag¢ dO
b-fi zMa"

1 ___¢)2 ___})2 a(__ )
+_

b-fiM a " _b a_ aM a

aMa aMa

(24)

O_Oo=f'h_=MaL_°'O='i"Or( )_ , )'
d}(roTZtg----_a,)M----T*;; L -_ +bpMa" a_b ad/ aMa"

s ¢s

aMa aMa

+
Ma " a_ ]dOb-P aMa "

(25)

In order to determine the supersonic region, the analytical solution

Mixed-Type equation corresponding to revolutionary surface is presented.

From the streamfunction equation:

of Hodograph

L J
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• [_ Ma" ,-fi Kal/t +[_ I ap la2ffMa K 2 a_b dK ]+ _ , + , =0 (26)
aa dMa" P aMa aa " -PaMa JaO 2

If put the

F(a) = 2 + -_aMa
(27)

thus the streamfunction equation can

which is similarly the plane flow

+ ¢' - o
2

_0"

be transformed to the analytical solution equation

Design example:

Design parameters: r = 1.29 Moo= 0.2238 0 = 0

Too= 1490 k 02=73 M2= 1.15

R 0= 300mm cq = 26.56 H 0= 50.05mm

The profile in the revoluitonary surface with the Hodograph Method is shown in Fig.6.

5. Summary

The research progress of Hodograph method on aerodynamic design in Tsinghua Uni-

versity has summrized in this article, i.e. (1) There are some restricted conditions in applica-

tion with Hodograph method to design the transonic turbine and compressor cascades. (2)

The Hodograph method design is suitable not only to the transonic turbine cascade but also

to the transonic compressor cascade (3) The three dimensional Hodograph method will be de-

veloped after obtaining the basic equation in three dimensional of Hodograph method, as the

example the transonic turbine cascade design of Hodograph in revolutionary surface is pres-

ented.
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